Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is proved that any countable consistent theory with infinite models has a Σ-presentable model of cardinality 2ω over ℍ????(ℝ). It is shown that some structures studied in analysis (in particular, a semigroup of continuous functions, certain structures of nonstandard analysis, and infinite-dimensional separable Hilbert spaces) have no simple Σ-presentations in hereditarily finite superstructures over existentially Steinitz structures. The results are proved by a unified method on the basis of a new general sufficient condition.

Авторлар туралы

A. Morozov

Sobolev Institute of Mathematics; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: morozov@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018