Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 56, № 6 (2018)

Article

Structures Computable in Polynomial Time. II

Alaev P.

Аннотация

We consider a new approach to investigating categoricity of structures computable in polynomial time. The approach is based on studying polynomially computable stable relations. It is shown that this categoricity is equivalent to the usual computable categoricity for computable Boolean algebras with computable set of atoms, and for computable linear orderings with computable set of adjacent pairs. Examples are constructed which show that this does not always hold. We establish a connection between dimensions based on computable and polynomially computable stable relations.

Algebra and Logic. 2018;56(6):429-442
pages 429-442 views

Automorphism Group of a Distance-Regular Graph with Intersection Array {35, 32, 1; 1, 4, 35}

Bitkina V., Makhnev A.

Аннотация

Let Γ be a distance regular graph with intersection array {35, 32, 1; 1, 4, 35} and let G = Aut(Γ) act transitively on the set of vertices of the graph Γ. It is shown that G is a {2, 3}-group.

Algebra and Logic. 2018;56(6):443-450
pages 443-450 views

Pronormality of Hall Subgroups in Their Normal Closure

Vdovin E., Nesterov M., Revin D.

Аннотация

It is known that for any set π of prime numbers, the following assertions are equivalent: (1) in any finite group, π-Hall subgroups are conjugate; (2) in any finite group, π-Hall subgroups are pronormal. It is proved that (1) and (2) are equivalent also to the following: (3) in any finite group, π-Hall subgroups are pronormal in their normal closure. Previously [10, Quest. 18.32], the question was posed whether it is true that in a finite group, π-Hall subgroups are always pronormal in their normal closure. Recently, M. N. Nesterov [7] proved that assertion (3) and assertions (1) and (2) are equivalent for any finite set π. The fact that there exist examples of finite sets π and finite groups G such that G contains more than one conjugacy class of π-Hall subgroups gives a negative answer to the question mentioned. Our main result shows that the requirement of finiteness for π is unessential for (1), (2), and (3) to be equivalent.

Algebra and Logic. 2018;56(6):451-457
pages 451-457 views

Nonpresentability of Some Structures of Analysis in Hereditarily Finite Superstructures

Morozov A.

Аннотация

It is proved that any countable consistent theory with infinite models has a Σ-presentable model of cardinality 2ω over ℍ????(ℝ). It is shown that some structures studied in analysis (in particular, a semigroup of continuous functions, certain structures of nonstandard analysis, and infinite-dimensional separable Hilbert spaces) have no simple Σ-presentations in hereditarily finite superstructures over existentially Steinitz structures. The results are proved by a unified method on the basis of a new general sufficient condition.

Algebra and Logic. 2018;56(6):458-472
pages 458-472 views

Polygons with a (P, 1)-Stable Theory

Ptakhov D.

Аннотация

Polygons with a (P, 1)-stable theory are considered. A criterion of being (P, 1)-stable for a polygon is established. As a consequence of the main criterion we prove that a polygon SS, where S is a group, is (P, 1)-stable if and only if S is a finite group. It is shown that the class of all polygons with monoid S is (P, 1)-stable only if S is a one-element monoid. (P, 1)-stability criteria are presented for polygons over right and left zero monoids.

Algebra and Logic. 2018;56(6):473-478
pages 473-478 views

Locally Finite Suzuki–Higman 2-Groups

Suchkov N.

Аннотация

We prove the following theorem. Let U be a locally finite Suzuki–Higman 2-group with respect to an automorphism group H. Then U and H are representable as the respective unions of ascending chains of finite subgroups U1 < U2 < . . . < Un < . . . and H1 < H2 < . . . < Hn < . . ., in which case every subgroup Un is a Suzuki 2-group with respect to Hn.

Algebra and Logic. 2018;56(6):479-497
pages 479-497 views

Orders of Elements of Finite Almost Simple Groups

Grechkoseeva M.
Algebra and Logic. 2018;56(6):502-505
pages 502-505 views

Sessions of the Seminar “Algebra i Logika”

Algebra and Logic. 2018;56(6):506-507
pages 506-507 views

Communications

The Number of Sylow Subgroups in Special Linear Groups of Degree 2

Wu Z., Guo W., Vdovin E.
Algebra and Logic. 2018;56(6):498-501
pages 498-501 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».