Weakly Precomplete Equivalence Relations in the Ershov Hierarchy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the computable reducibility ≤c for equivalence relations in the Ershov hierarchy. For an arbitrary notation a for a nonzero computable ordinal, it is stated that there exist a \( {\varPi}_a^{-1} \) -universal equivalence relation and a weakly precomplete \( {\varSigma}_a^{-1} \) - universal equivalence relation. We prove that for any \( {\varSigma}_a^{-1} \) equivalence relation E, there is a weakly precomplete \( {\varSigma}_a^{-1} \) equivalence relation F such that EcF. For finite levels \( {\varSigma}_m^{-1} \) in the Ershov hierarchy at which m = 4k +1 or m = 4k +2, it is shown that there exist infinitely many ≤c-degrees containing weakly precomplete, proper \( {\varSigma}_m^{-1} \) equivalence relations.

About the authors

N. A. Bazhenov

Sobolev Institute of Mathematics; Novosibirsk State University

Author for correspondence.
Email: bazhenov@math.nsc.ru
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

B. S. Kalmurzaev

Al-Farabi Kazakh National University

Email: bazhenov@math.nsc.ru
Kazakhstan, Al-Farabi Ave. 71, Alma-Ata, 050038

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature