Weakly Precomplete Equivalence Relations in the Ershov Hierarchy
- Authors: Bazhenov N.A.1,2, Kalmurzaev B.S.3
-
Affiliations:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Al-Farabi Kazakh National University
- Issue: Vol 58, No 3 (2019)
- Pages: 199-213
- Section: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234133
- DOI: https://doi.org/10.1007/s10469-019-09538-y
- ID: 234133
Cite item
Abstract
We study the computable reducibility ≤c for equivalence relations in the Ershov hierarchy. For an arbitrary notation a for a nonzero computable ordinal, it is stated that there exist a \( {\varPi}_a^{-1} \) -universal equivalence relation and a weakly precomplete \( {\varSigma}_a^{-1} \) - universal equivalence relation. We prove that for any \( {\varSigma}_a^{-1} \) equivalence relation E, there is a weakly precomplete \( {\varSigma}_a^{-1} \) equivalence relation F such that E ≤cF. For finite levels \( {\varSigma}_m^{-1} \) in the Ershov hierarchy at which m = 4k +1 or m = 4k +2, it is shown that there exist infinitely many ≤c-degrees containing weakly precomplete, proper \( {\varSigma}_m^{-1} \) equivalence relations.
About the authors
N. A. Bazhenov
Sobolev Institute of Mathematics; Novosibirsk State University
Author for correspondence.
Email: bazhenov@math.nsc.ru
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
B. S. Kalmurzaev
Al-Farabi Kazakh National University
Email: bazhenov@math.nsc.ru
Kazakhstan, Al-Farabi Ave. 71, Alma-Ata, 050038
Supplementary files
