Weakly Precomplete Equivalence Relations in the Ershov Hierarchy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the computable reducibility ≤c for equivalence relations in the Ershov hierarchy. For an arbitrary notation a for a nonzero computable ordinal, it is stated that there exist a \( {\varPi}_a^{-1} \) -universal equivalence relation and a weakly precomplete \( {\varSigma}_a^{-1} \) - universal equivalence relation. We prove that for any \( {\varSigma}_a^{-1} \) equivalence relation E, there is a weakly precomplete \( {\varSigma}_a^{-1} \) equivalence relation F such that EcF. For finite levels \( {\varSigma}_m^{-1} \) in the Ershov hierarchy at which m = 4k +1 or m = 4k +2, it is shown that there exist infinitely many ≤c-degrees containing weakly precomplete, proper \( {\varSigma}_m^{-1} \) equivalence relations.

作者简介

N. Bazhenov

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: bazhenov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

B. Kalmurzaev

Al-Farabi Kazakh National University

Email: bazhenov@math.nsc.ru
哈萨克斯坦, Al-Farabi Ave. 71, Alma-Ata, 050038

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019