Σ-Preorderings in \( \mathbb{H}\mathbbm{F} \)(ℝ)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is proved that the ordinal ω1cannot be embedded into a preordering Σ-definable with parameters in the hereditarily finite superstructure over the real numbers. As a corollary, we obtain the descriptions of ordinals Σ-presentable over\( \mathbb{H}\mathbbm{F} \)(ℝ) and of Gödel constructive sets of the form Lα. It is also shown that there are no Σ-presentations of structures of T-, m-, 1- and tt-degrees.

About the authors

A. S. Morozov

Sobolev Institute of Mathematics; Novosibirsk State University

Author for correspondence.
Email: morozov@math.nsc.ru
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature