Σ-Preorderings in \( \mathbb{H}\mathbbm{F} \)(ℝ)
- Authors: Morozov A.S.1,2
-
Affiliations:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Issue: Vol 58, No 5 (2019)
- Pages: 405-416
- Section: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234155
- DOI: https://doi.org/10.1007/s10469-019-09560-0
- ID: 234155
Cite item
Abstract
It is proved that the ordinal ω1cannot be embedded into a preordering Σ-definable with parameters in the hereditarily finite superstructure over the real numbers. As a corollary, we obtain the descriptions of ordinals Σ-presentable over\( \mathbb{H}\mathbbm{F} \)(ℝ) and of Gödel constructive sets of the form Lα. It is also shown that there are no Σ-presentations of structures of T-, m-, 1- and tt-degrees.
About the authors
A. S. Morozov
Sobolev Institute of Mathematics; Novosibirsk State University
Author for correspondence.
Email: morozov@math.nsc.ru
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
Supplementary files
