Algebraic Sets in a Finitely Generated 2-Step Solvable Rigid Pro-p-Group


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A 2-step solvable pro-p-group G is said to be rigid if it contains a normal series of the form G = G1> G2> G3 = 1 such that the factor group A = G/G2is torsionfree Abelian, and the subgroup G2is also Abelian and is torsion-free as apA-module, wherepA is the group algebra of the group A over the ring of p-adic integers. For instance, free metabelian pro-p-groups of rank ≥ 2 are rigid. We give a description of algebraic sets in an arbitrary finitely generated 2-step solvable rigid pro-p-group G, i.e., sets defined by systems of equations in one variable with coefficients in G.

Авторлар туралы

N. Romanovskii

Sobolev Institute of Mathematics; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: rmnvski@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016