Strong Decidability and Strong Recognizability
- Autores: Maksimova L.L.1,2, Yun V.F.1,2
-
Afiliações:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 56, Nº 5 (2017)
- Páginas: 370-385
- Seção: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234054
- DOI: https://doi.org/10.1007/s10469-017-9459-0
- ID: 234054
Citar
Resumo
Extensions of Johansson’s minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list Rul of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, J + Rul, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.
Palavras-chave
Sobre autores
L. Maksimova
Sobolev Institute of Mathematics; Novosibirsk State University
Autor responsável pela correspondência
Email: lmaksi@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
V. Yun
Sobolev Institute of Mathematics; Novosibirsk State University
Email: lmaksi@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
Arquivos suplementares
