Algebraic Geometry Over Algebraic Structures. VI. Geometrical Equivalence
- Авторы: Daniyarova E.Y.1, Myasnikov A.G.2, Remeslennikov V.N.1
-
Учреждения:
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology
- Выпуск: Том 56, № 4 (2017)
- Страницы: 281-294
- Раздел: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234044
- DOI: https://doi.org/10.1007/s10469-017-9449-2
- ID: 234044
Цитировать
Аннотация
The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures \( \mathcal{A} \) and ℬ of a language L, the classification problems for algebraic sets over \( \mathcal{A} \) and ℬ are equivalent. We establish a connection between geometrical equivalence and quasiequational equivalence.
Ключевые слова
Об авторах
E. Daniyarova
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: evelina.omsk@list.ru
Россия, ul. Pevtsova 13, Omsk, 644099
A. Myasnikov
Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology
Email: evelina.omsk@list.ru
США, Castle Point on Hudson, Hoboken, NJ, 07030-5991
V. Remeslennikov
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Email: evelina.omsk@list.ru
Россия, ul. Pevtsova 13, Omsk, 644099
Дополнительные файлы
