Algebraic Geometry Over Algebraic Structures. VI. Geometrical Equivalence
- 作者: Daniyarova E.Y.1, Myasnikov A.G.2, Remeslennikov V.N.1
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
- Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology
- 期: 卷 56, 编号 4 (2017)
- 页面: 281-294
- 栏目: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234044
- DOI: https://doi.org/10.1007/s10469-017-9449-2
- ID: 234044
如何引用文章
详细
The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures \( \mathcal{A} \) and ℬ of a language L, the classification problems for algebraic sets over \( \mathcal{A} \) and ℬ are equivalent. We establish a connection between geometrical equivalence and quasiequational equivalence.
作者简介
E. Daniyarova
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: evelina.omsk@list.ru
俄罗斯联邦, ul. Pevtsova 13, Omsk, 644099
A. Myasnikov
Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology
Email: evelina.omsk@list.ru
美国, Castle Point on Hudson, Hoboken, NJ, 07030-5991
V. Remeslennikov
Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
Email: evelina.omsk@list.ru
俄罗斯联邦, ul. Pevtsova 13, Omsk, 644099
补充文件
