Algebraic Geometry Over Algebraic Structures. VI. Geometrical Equivalence


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures \( \mathcal{A} \) and ℬ of a language L, the classification problems for algebraic sets over \( \mathcal{A} \) and ℬ are equivalent. We establish a connection between geometrical equivalence and quasiequational equivalence.

作者简介

E. Daniyarova

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: evelina.omsk@list.ru
俄罗斯联邦, ul. Pevtsova 13, Omsk, 644099

A. Myasnikov

Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology

Email: evelina.omsk@list.ru
美国, Castle Point on Hudson, Hoboken, NJ, 07030-5991

V. Remeslennikov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Email: evelina.omsk@list.ru
俄罗斯联邦, ul. Pevtsova 13, Omsk, 644099

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2017