Algebraic Geometry Over Algebraic Structures. VI. Geometrical Equivalence


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The present paper is one in our series of works on algebraic geometry over arbitrary algebraic structures, which focuses on the concept of geometrical equivalence. This concept signifies that for two geometrically equivalent algebraic structures \( \mathcal{A} \) and ℬ of a language L, the classification problems for algebraic sets over \( \mathcal{A} \) and ℬ are equivalent. We establish a connection between geometrical equivalence and quasiequational equivalence.

Sobre autores

E. Daniyarova

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: evelina.omsk@list.ru
Rússia, ul. Pevtsova 13, Omsk, 644099

A. Myasnikov

Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology

Email: evelina.omsk@list.ru
Estados Unidos da América, Castle Point on Hudson, Hoboken, NJ, 07030-5991

V. Remeslennikov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Email: evelina.omsk@list.ru
Rússia, ul. Pevtsova 13, Omsk, 644099

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2017