The Rate of Convergence to the Limit of the Probability of Encountering an Accidental Similarity in the Presence of Counter Examples
- 作者: Vinogradov D.V.1
-
隶属关系:
- Federal Research Center Computer Science and Control
- 期: 卷 52, 编号 1 (2018)
- 页面: 35-37
- 栏目: Information Analysis
- URL: https://journal-vniispk.ru/0005-1055/article/view/150204
- DOI: https://doi.org/10.3103/S0005105518010090
- ID: 150204
如何引用文章
详细
This paper refines the main result of [1], where the limit \( - {e^{ - a}} - a{e^{ - a}}\left[ {1 - {e^{ - c\sqrt a }}} \right]\) was proved for the probability of encountering an accidental similarity between two parent examples without \(m = c\sqrt n \) counter examples if each parent example and counter example is described by a series of \(\sqrt n \) independent Bernoulli trials with success probability \(p = \sqrt {a/n} \). In this paper, we prove that the rate of convergence to the limit is proportional to \({n^{\frac{1}{2}}}\).
作者简介
D. Vinogradov
Federal Research Center Computer Science and Control
编辑信件的主要联系方式.
Email: vinogradov.d.w@gmail.com
俄罗斯联邦, Moscow, 119333
补充文件
