The Rate of Convergence to the Limit of the Probability of Encountering an Accidental Similarity in the Presence of Counter Examples


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper refines the main result of [1], where the limit \( - {e^{ - a}} - a{e^{ - a}}\left[ {1 - {e^{ - c\sqrt a }}} \right]\) was proved for the probability of encountering an accidental similarity between two parent examples without \(m = c\sqrt n \) counter examples if each parent example and counter example is described by a series of \(\sqrt n \) independent Bernoulli trials with success probability \(p = \sqrt {a/n} \). In this paper, we prove that the rate of convergence to the limit is proportional to \({n^{\frac{1}{2}}}\).

作者简介

D. Vinogradov

Federal Research Center Computer Science and Control

编辑信件的主要联系方式.
Email: vinogradov.d.w@gmail.com
俄罗斯联邦, Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018