Eksperimental'nyy analiz algoritma otsenivaniya gel'derovoy eksponenty na baze kontseptsii ϵ-slozhnosti nepreryvnykh funktsiy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper describes one method for estimating the Hölder exponent based on the 
-complexity of continuous functions, a concept formulated lately. Computational experiments are carried out to estimate the Hölder exponent for smooth and fractal functions and study the trajectories of discrete deterministic and stochastic systems. The results of these experiments are presented and discussed.

Sobre autores

Yu. Dubnov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; National Research University Higher School of Economics

Email: yury.dubnov@phystech.edu
Moscow, Russia; Moscow, Russia

A. Popkov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

Email: apopkov@isa.ru
Moscow, Russia

B. Darkhovskiy

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

Autor responsável pela correspondência
Email: darbor2004@mail.ru
Moscow, Russia

Bibliografia

  1. Павлов А.Н., Анищенко В.С. Мультифрактальный анализ сложных сигналов // Успехи физических наук. 2007. Т. 177. С. 859-876.
  2. Ширяев А.Н. Основы стохастической финансовой математики. 2016. МЦНМО.
  3. Савицкий А.В. Метод оценки показателя Хёрста фрактального броуновского движения // Доклады РАН. 2019. Т. 489. № 5. С. 456-460.
  4. Falkoner K.J. Fractal Geometry: Mathematical foundations and Applications. Wiley, 2003.
  5. Ming L., Vitanyi P. An Introduction to Kolmogorov Complexity and Its Applications (англ.). 2nd ed. Springer, 1997.
  6. Piryatinska A., Darkhovsky B., Kaplan A. Binary classification of multichannel-EEG records based on the ǫ-complexity of continuous vector functions // Comput. Method. Program. Biomedicin. 2017. V. 152, P. 131-139.
  7. Piryatinska A., Darkhovsky B. Retrospective change-points detection for multidimensional time series of arbitrary nature: Model-free technology based on the ǫ-complexity theory // Entropy. 2021. V. 23. No. 12. P. 1626.
  8. Дарховский Б.С. Оценка показателя Гёльдера на основе концепции ǫ-сложности непрерывных функций // Математические заметки. 2022. Т. 111. Вып. 4. С. 620-623.]
  9. Dahan A., Dubnov Y.A., Popkov A.Y. et al. Brief Report: Classification of Autistic Traits According to Brain Activity Recoded by fNIRS Using ǫ-Complexity Coefficients // J. Autism Dev Disord. 2020. Vol. 51. Iss. 9. P. 3380-3390.
  10. Дарховский Б.С. О сложности и размерности непрерывных конечномерных отображений // Теория вероятностей и ее применения. 2020. Т. 65. Вып. 3. С. 479-497.
  11. Колмогоров А.Н. Комбинаторные основания теории информации и исчисления вероятностей // Успехи математических наук. 1983. Т. 38. № 4. С. 27-36.
  12. Ито К., Маккин Г. Диффузионные процессы и их траектории. М.: Мир, 1968.
  13. M¨orters P., Peres V. Brownian Motion. Cambridge University Press, 2010.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».