Экспериментальный анализ алгоритма оценивания гёльдеровой экспоненты на базе концепции ϵ-сложности непрерывных функций

Обложка

Цитировать

Полный текст

Аннотация

В работе приводится описание метода оценивания гёльдеровой экспоненты на базе недавно сформулированной концепции ǫ-сложности непрерывных функций. Приведены результаты вычислительных экспериментов по оценке гёльдеровой экспоненты для гладких и фрактальных функций, а также результаты вычислительных экспериментов с траекториями дискретных детерминированных и стохастических систем.

Об авторах

Ю. А Дубнов

Федеральный исследовательский центр “Информатика и управление” РАН;Национальный исследовательский университет “Высшая школа экономики”

Email: yury.dubnov@phystech.edu
Москва

А. Ю Попков

Федеральный исследовательский центр “Информатика и управление” РАН

Email: apopkov@isa.ru
Москва

Б. С Дарховский

Федеральный исследовательский центр “Информатика и управление” РАН

Автор, ответственный за переписку.
Email: darbor2004@mail.ru
Москва

Список литературы

  1. Павлов А.Н., Анищенко В.С. Мультифрактальный анализ сложных сигналов // Успехи физических наук. 2007. Т. 177. С. 859-876.
  2. Ширяев А.Н. Основы стохастической финансовой математики. 2016. МЦНМО.
  3. Савицкий А.В. Метод оценки показателя Хёрста фрактального броуновского движения // Доклады РАН. 2019. Т. 489. № 5. С. 456-460.
  4. Falkoner K.J. Fractal Geometry: Mathematical foundations and Applications. Wiley, 2003.
  5. Ming L., Vitanyi P. An Introduction to Kolmogorov Complexity and Its Applications (англ.). 2nd ed. Springer, 1997.
  6. Piryatinska A., Darkhovsky B., Kaplan A. Binary classification of multichannel-EEG records based on the ǫ-complexity of continuous vector functions // Comput. Method. Program. Biomedicin. 2017. V. 152, P. 131-139.
  7. Piryatinska A., Darkhovsky B. Retrospective change-points detection for multidimensional time series of arbitrary nature: Model-free technology based on the ǫ-complexity theory // Entropy. 2021. V. 23. No. 12. P. 1626.
  8. Дарховский Б.С. Оценка показателя Гёльдера на основе концепции ǫ-сложности непрерывных функций // Математические заметки. 2022. Т. 111. Вып. 4. С. 620-623.]
  9. Dahan A., Dubnov Y.A., Popkov A.Y. et al. Brief Report: Classification of Autistic Traits According to Brain Activity Recoded by fNIRS Using ǫ-Complexity Coefficients // J. Autism Dev Disord. 2020. Vol. 51. Iss. 9. P. 3380-3390.
  10. Дарховский Б.С. О сложности и размерности непрерывных конечномерных отображений // Теория вероятностей и ее применения. 2020. Т. 65. Вып. 3. С. 479-497.
  11. Колмогоров А.Н. Комбинаторные основания теории информации и исчисления вероятностей // Успехи математических наук. 1983. Т. 38. № 4. С. 27-36.
  12. Ито К., Маккин Г. Диффузионные процессы и их траектории. М.: Мир, 1968.
  13. M¨orters P., Peres V. Brownian Motion. Cambridge University Press, 2010.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».