ИССЛЕДОВАНИЕ КОЛИЧЕСТВА ТРЕУГОЛЬНИКОВ В ГРАФАХ, ЭВОЛЮЦИОНИРУЮЩИХ КЛАСТЕРНЫМ ПРИСОЕДИНЕНИЕМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Модель кластерного присоединения (КП), предложенная Багроу и Брокманном (2013 г.), может быть использована как инструмент эволюции ненаправленных случайных сетей. В статье вводится обобщенное определение модели КП. Теоретические результаты получены для новой модели КП, которую можно рассматривать как предел прежней, когда параметр модели αстремится к нулю, а параметр ∈=0. Предметом исследования является количество треугольников связанных узлов в графе на шаге эволюции n– важная характеристика кластеризации сети. Доказано, что количество треугольников стремится к бесконечности с вероятностью единица для предложенной модели эволюции при n→∞, а скорость роста среднего количества треугольников EΔn на шаге эволюции n≥2 выше логарифмической. Компьютерное моделирование использовано длямоделирования последовательностей количества треугольников. Данное моделирование основано на обобщенной модели урн Пойа–Эггенбергера,что предложено впервые.

Об авторах

M. ВАЙЧЮЛИС

Институт науки данных и цифровых технологий, Вильнюсский университет

Email: marijus.vaiciulis@mif.vu.lt
д-р мат. наук Литва

Н. М МАРКОВИЧ

Институт проблем управления им. В.А. Трапезникова РАН

Email: nat.markovich@gmail.com
д-р физ.-мат. наук Москва

Список литературы

  1. Van der Hofstad R. Random Graphs and Complex Networks. Cambridge: Cambridge University Press, 2017. V. 1.
  2. Bollobas B. Random Graphs. Cambridge: Cambridge University Press, 2001. 2nd ed.
  3. Newman M.E.J. Networks. Oxford University Press: Oxford, New York, 2018.
  4. Bagrow J.P., Brockmann D. Natural Emergence of Clusters and Bursts in Network Evolution // Phys. Rev. X. 2013. No. 3. P. 021016.
  5. Newman M.E.J. Random Graphs with Clustering // Phys. Rev. Lett. 2009. No. 103. I. 5. P. 058701.
  6. Qun Liu, Zhishan Dong. Limit laws for the number of triangles in the generalized random graphs with random node weights // Stat. Probab. Lett. 2020. No. 161. P. 108733.
  7. Bobkov S.G., Danshina M.A., Ulyanov V.V. Rate of Convergence to the Poisson Law of the Numbers of Cycles in the Generalized Random Graphs / In Operator Theory and Harmonic Analysis. Springer Proceedings in Mathematics and Statistics, V. 358. Eds. Karapetyants, A.N., Pavlov, I.V., Shiryaev, A.N. Springer: Cham, 2021. P. 109–133.
  8. Garavaglia A., Stegehuis C. Subgraphs in preferential attachment models // Advances in Applied Probability. 2019. No. 51. P. 898–926.
  9. Wang T., Resnick S.I. Consistency of Hill estimators in a linear preferential attachment model // Extremes. 2019. No. 22. P. 1–28.
  10. Fristedt B., Gray L. A Modern Approach to Probability Theory. Boston: Birkh¨auser, 1997.
  11. Ширяев А.Н. Вероятность. М.: Наука, 1989.
  12. Chen M.-R., Kuba M. On generalized P´olya urn models // J. Appl. Probab. 2013. No. 50. P. 1169–1186.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».