Boundary value problem with normal derivatives for a higher-order elliptic equation on the plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For an elliptic operator of order 2l with constant (and only leading) real coefficients, we consider a boundary value problem in which the normal derivatives of order (kj −1), j = 1,..., l, where 1 ≤ k1 < ··· < kl, are specified. It becomes the Dirichlet problem for kj = j and the Neumann problem for kj = j + 1. We obtain a sufficient condition for the Fredholm property of which problem and derive an index formula.

作者简介

B. Koshanov

Institute of Mathematics and Mathematical Modeling; Belgorod State University

编辑信件的主要联系方式.
Email: koshanov@list.ru
哈萨克斯坦, Almaty; Belgorod

A. Soldatov

Institute of Mathematics and Mathematical Modeling; Belgorod State University

Email: koshanov@list.ru
哈萨克斯坦, Almaty; Belgorod

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016