Initial Value Problem for B-Hyperbolic Equation with Integral Condition of the Second Kind
- Авторы: Sabitov K.B.1,2, Zaitseva N.V.3
-
Учреждения:
- Bashkortostan Institute for Strategic Research
- Sterlitamak Branch of Bashkir State University
- Kazan (Volga) Federal University
- Выпуск: Том 54, № 1 (2018)
- Страницы: 121-133
- Раздел: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154677
- DOI: https://doi.org/10.1134/S001226611801010X
- ID: 154677
Цитировать
Аннотация
For the hyperbolic equation with Bessel operator, we study the initial boundaryvalue problem with integral nonlocal condition of the second kind in a rectangular domain. The integral identity method is used to prove the uniqueness of the solution to the posed problem. The solution is constructed as a Fourier–Bessel series. To justify the existence of the solution to the nonlocal problem, we obtain sufficient conditions to be imposed on the initial conditions to ensure the convergence of the constructed series in the class of regular solutions.
Об авторах
K. Sabitov
Bashkortostan Institute for Strategic Research; Sterlitamak Branch of Bashkir State University
Автор, ответственный за переписку.
Email: sabitov_fmf@mail.ru
Россия, Sterlitamak, Bashkortostan, 453103; Sterlitamak, Bashkortostan, 453103
N. Zaitseva
Kazan (Volga) Federal University
Email: sabitov_fmf@mail.ru
Россия, Kazan, Tatarstan, 420008
Дополнительные файлы
