Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 54, № 1 (2018)

Ordinary Differential Equations

Construction of a Fuchs Equation with Four Given Finite Singular Points and Given Reducible 2 × 2 Monodromy Matrices

Amel’kin V., Vasilevich M.

Аннотация

On the complex projective line, we construct a Fuchs equation with four given finite singular points and with fundamental solution matrix that has given reducible 2×2 monodromy matrices in the nonresonance case.

Differential Equations. 2018;54(1):1-6
pages 1-6 views

Weinstein Criteria and Regularized Traces in the Case of Transverse Vibrations of an Elastic String with Springs

Kanguzhin B.

Аннотация

The transverse vibrations of a string with additional restrictions in the form of elastic point constraints are studied. In contrast toWeinstein’s original approach, the constraints are not represented as orthogonality-type conditions in the case under study. Nevertheless, it is shown that the main results of Weinstein’s theory remain valid. It is also shown that the string rigidity coefficients can uniquely be reconstructed from the first-order regularized traces of the corresponding operators. This permits one to give a physical interpretation of regularized traces.

Differential Equations. 2018;54(1):7-12
pages 7-12 views

Dynamics of Delay Systems with Rapidly Oscillating Coefficients

Kashchenko S.

Аннотация

The problems of generalization of the averaging principle to delay systems are considered. New effects are revealed in the study of bifurcation problems, as are new phenomena that arise in the case of rapid oscillations of the delay. As an application of the results, the dynamics of a logistic equation with rapidly oscillating coefficients is studied.

Differential Equations. 2018;54(1):13-27
pages 13-27 views

Construction of Asymptotics of Solutions of Differential Equations with Cusp-Type Degeneration in the Coefficients in the Case of Multiple Roots of the Highest-Order Symbol

Korovina M., Smirnov V.

Аннотация

The asymptotics of linear differential equations with cusp-type degeneration are studied. The problem of constructing asymptotics at infinity for equations with holomorphic coefficients can be reduced to that problem. The main result is the construction of asymptotics of solutions of such equations in the case of multiple roots of the highest-order symbol under certain additional conditions on the lower-order symbol of the differential operator.

Differential Equations. 2018;54(1):28-37
pages 28-37 views

Uniform Boundedness in the Sense of Poisson of Solutions of Systems of Differential Equations and Lyapunov Vector Functions

Lapin K.

Аннотация

We introduce several generalizations of the properties of equiboundedness and uniform boundedness of solutions of ordinary differential systems, which are united by the common names of equiboundedness in the sense of Poisson and uniform boundedness in the sense of Poisson. For each of the above-introduced properties, we use the method of Lyapunov vector functions to obtain sufficient criteria for the system to have a certain property. In terms of the upper Dini derivative of the Lyapunov function given by a system, several criteria are established for the solutions of this system to have the relevant type of uniform boundedness in the sense of Poisson.

Differential Equations. 2018;54(1):38-48
pages 38-48 views

On Representation of a Solution to the Cauchy Problem by a Fourier Series in Sobolev-Orthogonal Polynomials Generated by Laguerre Polynomials

Sharapudinov I., Magomed-Kasumov M.

Аннотация

We consider the problem of representing a solution to the Cauchy problem for an ordinary differential equation as a Fourier series in polynomials lr,kα(x) (k = 0, 1,...) that are Sobolev-orthonormal with respect to the inner product

\(\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{(v)}}(0){g^{(v)}}} (0) + \int\limits_0^\infty {{f^{(r)}}(t)} {g^{(r)}}(t){t^\alpha }{e^{ - t}}dt\)
, and generated by the classical orthogonal Laguerre polynomials Lkα(x) (k = 0, 1,...). The polynomials lr,kα(x) are represented as expressions containing the Laguerre polynomials Lnα−r (x). An explicit form of the polynomials lr,k+rα(x) is established as an expansion in the powers xr+l, l = 0,..., k. These results can be used to study the asymptotic properties of the polynomials lr,kα(x) as k→∞and the approximation properties of the partial sums of Fourier series in these polynomials.

Differential Equations. 2018;54(1):49-66
pages 49-66 views

Partial Differential Equations

Solvability of a Boundary Value Problem for Second-Order Elliptic Differential Operator Equations with a Spectral Parameter in the Equation and in the Boundary Conditions

Aliev B., Kurbanova N., Yakubov Y.

Аннотация

In a Hilbert space H, we study noncoercive solvability of a boundary value problem for second-order elliptic differential-operator equations with a spectral parameter in the equation and in the boundary conditions in the case where the leading part of one of the boundary conditions contains a bounded linear operator in addition to the spectral parameter. We also illustrate applications of the general results obtained to elliptic boundary value problems.

Differential Equations. 2018;54(1):67-85
pages 67-85 views

On Global Existence of Solutions of Initial Boundary Value Problem for a System of Semilinear Parabolic Equations with Nonlinear Nonlocal Neumann Boundary Conditions

Gladkov A., Nikitin A.

Аннотация

We establish conditions for the existence and nonexistence of global solutions of initial boundary value problem for a system of semilinear parabolic equations with nonlinear nonlocal Neumann boundary conditions. We show that these conditions are determined by the behavior of the problem coefficients as t→∞.

Differential Equations. 2018;54(1):86-105
pages 86-105 views

On Exact Multidimensional Solutions of a Nonlinear System of Reaction–Diffusion Equations

Kosov A., Semenov E.

Аннотация

We study a nonlinear reaction–diffusion system modeled by a system of two parabolic-type equations with power-law nonlinearities. Such systems describe the processes of nonlinear diffusion in reacting two-component media. We construct multiparameter families of exact solutions and distinguish the cases of blow-up solutions and exact solutions periodic in time and anisotropic in spatial variables that can be represented in elementary functions.

Differential Equations. 2018;54(1):106-120
pages 106-120 views

Initial Value Problem for B-Hyperbolic Equation with Integral Condition of the Second Kind

Sabitov K., Zaitseva N.

Аннотация

For the hyperbolic equation with Bessel operator, we study the initial boundaryvalue problem with integral nonlocal condition of the second kind in a rectangular domain. The integral identity method is used to prove the uniqueness of the solution to the posed problem. The solution is constructed as a Fourier–Bessel series. To justify the existence of the solution to the nonlocal problem, we obtain sufficient conditions to be imposed on the initial conditions to ensure the convergence of the constructed series in the class of regular solutions.

Differential Equations. 2018;54(1):121-133
pages 121-133 views

Inverse Problem for an Integro-Differential Equation of Acoustics

Safarov Z., Durdiev D.

Аннотация

We consider the hyperbolic integro-differential equation of acoustics. The direct problem is to determine the acoustic pressure created by a concentrated excitation source located at the boundary of a spatial domain from the initial boundary-value problem for this equation. For this direct problem, we study the inverse problem, which consists in determining the onedimensional kernel of the integral term from the known solution of the direct problem at the point x = 0 for t > 0. This problem reduces to solving a system of integral equations in unknown functions. The latter is solved by using the principle of contraction mapping in the space of continuous functions. The local unique solvability of the posed problem is proved.

Differential Equations. 2018;54(1):134-142
pages 134-142 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».