Solvability of Mixed Problems for the Klein–Gordon–Fock Equation in the Class Lp for p ≥ 1
- Authors: Kuleshov A.A.1,2,3, Mokrousov I.S.1,2,3, Smirnov I.N.1,2,3
-
Affiliations:
- Lomonosov Moscow State University
- Steklov Mathematical Institute
- Peoples’ Friendship University of Russia
- Issue: Vol 54, No 3 (2018)
- Pages: 330-334
- Section: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154707
- DOI: https://doi.org/10.1134/S0012266118030059
- ID: 154707
Cite item
Abstract
We prove that the mixed problem for the Klein–Gordon–Fock equation utt(x, t) − uxx(x, t) + au(x, t) = 0, where a ≥ 0, in the rectangle QT = [0 ≤ x ≤ l] × [0 ≤ t ≤ T] with zero initial conditions and with the boundary conditions u(0, t) = μ(t) ∈ Lp[0, T ], u(l, t) = 0, has a unique generalized solution u(x, t) in the class Lp(QT) for p ≥ 1. We construct the solution in explicit analytic form.
About the authors
A. A. Kuleshov
Lomonosov Moscow State University; Steklov Mathematical Institute; Peoples’ Friendship University of Russia
Author for correspondence.
Email: kuleshov.a.a@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 119991; Moscow, 117198
I. S. Mokrousov
Lomonosov Moscow State University; Steklov Mathematical Institute; Peoples’ Friendship University of Russia
Email: kuleshov.a.a@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 119991; Moscow, 117198
I. N. Smirnov
Lomonosov Moscow State University; Steklov Mathematical Institute; Peoples’ Friendship University of Russia
Email: kuleshov.a.a@yandex.ru
Russian Federation, Moscow, 119991; Moscow, 119991; Moscow, 117198
Supplementary files
