Locally One-Dimensional Difference Scheme for the Third Boundary Value Problem for a Parabolic Equation of the General Form with a Nonlocal Source
- 作者: Beshtokova Z.V.1, Shkhanukov-Lafishev M.K.1
-
隶属关系:
- Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center
- 期: 卷 54, 编号 7 (2018)
- 页面: 870-880
- 栏目: Numerical Methods
- URL: https://journal-vniispk.ru/0012-2661/article/view/154801
- DOI: https://doi.org/10.1134/S0012266118070042
- ID: 154801
如何引用文章
详细
We consider a locally one-dimensional scheme for an equation of parabolic type of the general form in a p-dimensional parallelepiped, obtain an a priori estimate for its solution, and prove that the solutions of this scheme converge to a solution of the equation at the rate O(|h|2 + τ), where |h|2 = h12 + · · · + hp2 and pα, α = 1,..., p, and τ are the steps in the space and time variables. We do not assume that the operator in the leading part of the equation is sign definite.
作者简介
Z. Beshtokova
Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center
编辑信件的主要联系方式.
Email: zarabaeva@yandex.ru
俄罗斯联邦, Nalchik, 360000
M. Shkhanukov-Lafishev
Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center
Email: zarabaeva@yandex.ru
俄罗斯联邦, Nalchik, 360000
补充文件
