Locally One-Dimensional Difference Scheme for the Third Boundary Value Problem for a Parabolic Equation of the General Form with a Nonlocal Source
- Авторы: Beshtokova Z.V.1, Shkhanukov-Lafishev M.K.1
-
Учреждения:
- Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center
- Выпуск: Том 54, № 7 (2018)
- Страницы: 870-880
- Раздел: Numerical Methods
- URL: https://journal-vniispk.ru/0012-2661/article/view/154801
- DOI: https://doi.org/10.1134/S0012266118070042
- ID: 154801
Цитировать
Аннотация
We consider a locally one-dimensional scheme for an equation of parabolic type of the general form in a p-dimensional parallelepiped, obtain an a priori estimate for its solution, and prove that the solutions of this scheme converge to a solution of the equation at the rate O(|h|2 + τ), where |h|2 = h12 + · · · + hp2 and pα, α = 1,..., p, and τ are the steps in the space and time variables. We do not assume that the operator in the leading part of the equation is sign definite.
Об авторах
Z. Beshtokova
Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center
Автор, ответственный за переписку.
Email: zarabaeva@yandex.ru
Россия, Nalchik, 360000
M. Shkhanukov-Lafishev
Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center
Email: zarabaeva@yandex.ru
Россия, Nalchik, 360000
Дополнительные файлы
