Locally One-Dimensional Difference Scheme for the Third Boundary Value Problem for a Parabolic Equation of the General Form with a Nonlocal Source


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a locally one-dimensional scheme for an equation of parabolic type of the general form in a p-dimensional parallelepiped, obtain an a priori estimate for its solution, and prove that the solutions of this scheme converge to a solution of the equation at the rate O(|h|2 + τ), where |h|2 = h12 + · · · + hp2 and pα, α = 1,..., p, and τ are the steps in the space and time variables. We do not assume that the operator in the leading part of the equation is sign definite.

Sobre autores

Z. Beshtokova

Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center

Autor responsável pela correspondência
Email: zarabaeva@yandex.ru
Rússia, Nalchik, 360000

M. Shkhanukov-Lafishev

Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Center

Email: zarabaeva@yandex.ru
Rússia, Nalchik, 360000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018