Estimate for the amplitude of the limit cycle of the Liénard equation
- Авторлар: Ignat’ev A.O.1
-
Мекемелер:
- Institute of Applied Mathematics and Mechanics
- Шығарылым: Том 53, № 3 (2017)
- Беттер: 302-310
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154301
- DOI: https://doi.org/10.1134/S0012266117030028
- ID: 154301
Дәйексөз келтіру
Аннотация
We consider the nonlinear Liénard equation \(\ddot x\left( t \right) + f\left( x \right)\dot x\left( t \right) + g\left( x \right) = 0\). Liénard obtained sufficient conditions on the functions f(x) and g(x) under which this equation has a unique stable limit cycle. Under additional conditions, we prove a theorem that permits one to estimate the amplitude (the maximum value of x) of this limit cycle from above. The theorem is used to estimate the amplitude of the limit cycle of the van der Pol equation \(\ddot x\left( t \right) + \mu \left[ {{x^2}\left( t \right) - 1} \right]\dot x\left( t \right) + x\left( t \right) = 0\).
Авторлар туралы
A. Ignat’ev
Institute of Applied Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: aoignat@mail.ru
Украина, Donetsk
Қосымша файлдар
