Estimate for the amplitude of the limit cycle of the Liénard equation
- 作者: Ignat’ev A.O.1
-
隶属关系:
- Institute of Applied Mathematics and Mechanics
- 期: 卷 53, 编号 3 (2017)
- 页面: 302-310
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154301
- DOI: https://doi.org/10.1134/S0012266117030028
- ID: 154301
如何引用文章
详细
We consider the nonlinear Liénard equation \(\ddot x\left( t \right) + f\left( x \right)\dot x\left( t \right) + g\left( x \right) = 0\). Liénard obtained sufficient conditions on the functions f(x) and g(x) under which this equation has a unique stable limit cycle. Under additional conditions, we prove a theorem that permits one to estimate the amplitude (the maximum value of x) of this limit cycle from above. The theorem is used to estimate the amplitude of the limit cycle of the van der Pol equation \(\ddot x\left( t \right) + \mu \left[ {{x^2}\left( t \right) - 1} \right]\dot x\left( t \right) + x\left( t \right) = 0\).
作者简介
A. Ignat’ev
Institute of Applied Mathematics and Mechanics
编辑信件的主要联系方式.
Email: aoignat@mail.ru
乌克兰, Donetsk
补充文件
