Estimate for the amplitude of the limit cycle of the Liénard equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the nonlinear Liénard equation \(\ddot x\left( t \right) + f\left( x \right)\dot x\left( t \right) + g\left( x \right) = 0\). Liénard obtained sufficient conditions on the functions f(x) and g(x) under which this equation has a unique stable limit cycle. Under additional conditions, we prove a theorem that permits one to estimate the amplitude (the maximum value of x) of this limit cycle from above. The theorem is used to estimate the amplitude of the limit cycle of the van der Pol equation \(\ddot x\left( t \right) + \mu \left[ {{x^2}\left( t \right) - 1} \right]\dot x\left( t \right) + x\left( t \right) = 0\).

作者简介

A. Ignat’ev

Institute of Applied Mathematics and Mechanics

编辑信件的主要联系方式.
Email: aoignat@mail.ru
乌克兰, Donetsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017