Estimate for the amplitude of the limit cycle of the Liénard equation
- Авторы: Ignat’ev A.O.1
-
Учреждения:
- Institute of Applied Mathematics and Mechanics
- Выпуск: Том 53, № 3 (2017)
- Страницы: 302-310
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154301
- DOI: https://doi.org/10.1134/S0012266117030028
- ID: 154301
Цитировать
Аннотация
We consider the nonlinear Liénard equation \(\ddot x\left( t \right) + f\left( x \right)\dot x\left( t \right) + g\left( x \right) = 0\). Liénard obtained sufficient conditions on the functions f(x) and g(x) under which this equation has a unique stable limit cycle. Under additional conditions, we prove a theorem that permits one to estimate the amplitude (the maximum value of x) of this limit cycle from above. The theorem is used to estimate the amplitude of the limit cycle of the van der Pol equation \(\ddot x\left( t \right) + \mu \left[ {{x^2}\left( t \right) - 1} \right]\dot x\left( t \right) + x\left( t \right) = 0\).
Об авторах
A. Ignat’ev
Institute of Applied Mathematics and Mechanics
Автор, ответственный за переписку.
Email: aoignat@mail.ru
Украина, Donetsk
Дополнительные файлы
