Solvability of a Model Oblique Derivative Problem for the Heat Equation in the Zygmund Space H1


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the oblique derivative problem for the heat equation in a model statement. We introduce a difference matching condition for the initial and boundary functions, under which we establish conditions on the data of the problem sufficient for the solution to belong to the parabolic Zygmund space H1, which is an analog of the parabolic Hölder space for the case of an integer smoothness exponent. We present an example showing that if the above-mentioned matching condition is not satisfied, then the solution may fail to belong to the space H1.

作者简介

A. Konenkov

Esenin Ryazan State University

编辑信件的主要联系方式.
Email: a.konenkov@rsu.edu.ru
俄罗斯联邦, Ryazan, 390000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018