Solvability of a Model Oblique Derivative Problem for the Heat Equation in the Zygmund Space H1
- 作者: Konenkov A.N.1
-
隶属关系:
- Esenin Ryazan State University
- 期: 卷 54, 编号 5 (2018)
- 页面: 658-668
- 栏目: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154757
- DOI: https://doi.org/10.1134/S0012266118050099
- ID: 154757
如何引用文章
详细
We consider the oblique derivative problem for the heat equation in a model statement. We introduce a difference matching condition for the initial and boundary functions, under which we establish conditions on the data of the problem sufficient for the solution to belong to the parabolic Zygmund space H1, which is an analog of the parabolic Hölder space for the case of an integer smoothness exponent. We present an example showing that if the above-mentioned matching condition is not satisfied, then the solution may fail to belong to the space H1.
作者简介
A. Konenkov
Esenin Ryazan State University
编辑信件的主要联系方式.
Email: a.konenkov@rsu.edu.ru
俄罗斯联邦, Ryazan, 390000
补充文件
