Solvability of a Model Oblique Derivative Problem for the Heat Equation in the Zygmund Space H1


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider the oblique derivative problem for the heat equation in a model statement. We introduce a difference matching condition for the initial and boundary functions, under which we establish conditions on the data of the problem sufficient for the solution to belong to the parabolic Zygmund space H1, which is an analog of the parabolic Hölder space for the case of an integer smoothness exponent. We present an example showing that if the above-mentioned matching condition is not satisfied, then the solution may fail to belong to the space H1.

Об авторах

A. Konenkov

Esenin Ryazan State University

Автор, ответственный за переписку.
Email: a.konenkov@rsu.edu.ru
Россия, Ryazan, 390000

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).