Stable Relaxation Cycle in a Bilocal Neuron Model
- Авторлар: Glyzin S.D.1,2, Kolesov A.Y.1, Rozov N.K.3
-
Мекемелер:
- Demidov Yaroslavl State University
- Scientific Center of the Russian Academy of Sciences in Chernogolovka
- Lomonosov Moscow State University
- Шығарылым: Том 54, № 10 (2018)
- Беттер: 1285-1309
- Бөлім: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154846
- DOI: https://doi.org/10.1134/S0012266118100026
- ID: 154846
Дәйексөз келтіру
Аннотация
We consider the so-called bilocal neuron model, which is a special system of two nonlinear delay differential equations coupled by linear diffusion terms. The system is invariant under the interchange of phase variables. We prove that, under an appropriate choice of parameters, the system under study has a stable relaxation cycle whose components turn into each other under a certain phase shift.
Авторлар туралы
S. Glyzin
Demidov Yaroslavl State University; Scientific Center of the Russian Academy of Sciences in Chernogolovka
Хат алмасуға жауапты Автор.
Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150003; Moscow, Moscow oblast, 142432
A. Kolesov
Demidov Yaroslavl State University
Email: glyzin@uniyar.ac.ru
Ресей, Yaroslavl, 150003
N. Rozov
Lomonosov Moscow State University
Email: glyzin@uniyar.ac.ru
Ресей, Moscow, 119991
Қосымша файлдар
