Stable Relaxation Cycle in a Bilocal Neuron Model
- Авторы: Glyzin S.D.1,2, Kolesov A.Y.1, Rozov N.K.3
-
Учреждения:
- Demidov Yaroslavl State University
- Scientific Center of the Russian Academy of Sciences in Chernogolovka
- Lomonosov Moscow State University
- Выпуск: Том 54, № 10 (2018)
- Страницы: 1285-1309
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154846
- DOI: https://doi.org/10.1134/S0012266118100026
- ID: 154846
Цитировать
Аннотация
We consider the so-called bilocal neuron model, which is a special system of two nonlinear delay differential equations coupled by linear diffusion terms. The system is invariant under the interchange of phase variables. We prove that, under an appropriate choice of parameters, the system under study has a stable relaxation cycle whose components turn into each other under a certain phase shift.
Об авторах
S. Glyzin
Demidov Yaroslavl State University; Scientific Center of the Russian Academy of Sciences in Chernogolovka
Автор, ответственный за переписку.
Email: glyzin@uniyar.ac.ru
Россия, Yaroslavl, 150003; Moscow, Moscow oblast, 142432
A. Kolesov
Demidov Yaroslavl State University
Email: glyzin@uniyar.ac.ru
Россия, Yaroslavl, 150003
N. Rozov
Lomonosov Moscow State University
Email: glyzin@uniyar.ac.ru
Россия, Moscow, 119991
Дополнительные файлы
