Stable Relaxation Cycle in a Bilocal Neuron Model


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the so-called bilocal neuron model, which is a special system of two nonlinear delay differential equations coupled by linear diffusion terms. The system is invariant under the interchange of phase variables. We prove that, under an appropriate choice of parameters, the system under study has a stable relaxation cycle whose components turn into each other under a certain phase shift.

作者简介

S. Glyzin

Demidov Yaroslavl State University; Scientific Center of the Russian Academy of Sciences in Chernogolovka

编辑信件的主要联系方式.
Email: glyzin@uniyar.ac.ru
俄罗斯联邦, Yaroslavl, 150003; Moscow, Moscow oblast, 142432

A. Kolesov

Demidov Yaroslavl State University

Email: glyzin@uniyar.ac.ru
俄罗斯联邦, Yaroslavl, 150003

N. Rozov

Lomonosov Moscow State University

Email: glyzin@uniyar.ac.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018