Stable Relaxation Cycle in a Bilocal Neuron Model
- 作者: Glyzin S.D.1,2, Kolesov A.Y.1, Rozov N.K.3
-
隶属关系:
- Demidov Yaroslavl State University
- Scientific Center of the Russian Academy of Sciences in Chernogolovka
- Lomonosov Moscow State University
- 期: 卷 54, 编号 10 (2018)
- 页面: 1285-1309
- 栏目: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154846
- DOI: https://doi.org/10.1134/S0012266118100026
- ID: 154846
如何引用文章
详细
We consider the so-called bilocal neuron model, which is a special system of two nonlinear delay differential equations coupled by linear diffusion terms. The system is invariant under the interchange of phase variables. We prove that, under an appropriate choice of parameters, the system under study has a stable relaxation cycle whose components turn into each other under a certain phase shift.
作者简介
S. Glyzin
Demidov Yaroslavl State University; Scientific Center of the Russian Academy of Sciences in Chernogolovka
编辑信件的主要联系方式.
Email: glyzin@uniyar.ac.ru
俄罗斯联邦, Yaroslavl, 150003; Moscow, Moscow oblast, 142432
A. Kolesov
Demidov Yaroslavl State University
Email: glyzin@uniyar.ac.ru
俄罗斯联邦, Yaroslavl, 150003
N. Rozov
Lomonosov Moscow State University
Email: glyzin@uniyar.ac.ru
俄罗斯联邦, Moscow, 119991
补充文件
