Uniform Estimates of Remainders in Spectral Analysis of Linear Differential Systems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the problem of estimating the expression Υ(λ) = sup{|∫0xf(t)eiλω(t)dt|: x ∈ [0, 1]}, where the derivative of the function ω(t) is positive almost everywhere on [0, 1]. In particular, for fLp[0, 1], p ∈ (1, 2], we prove the estimate ∥Υ(λ)∥ Lq(ℝ) ≤ CfLp, where 1/p + 1/q = 1. The same estimate is obtained in the space Lq(), where is an arbitrary Carleson measure in the open upper half-plane ℂ+. In addition, we estimate more complicated expressions like Υ(λ) that arise when studying the asymptotics of fundamental solution systems for systems of the form y′ = λρ(x)By +A(x)y +C(x, λ)y as |λ| →∞in appropriate sectors of the complex plane.

Авторлар туралы

A. Savchuk

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: artem_savchuk@mail.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019