Uniform Estimates of Remainders in Spectral Analysis of Linear Differential Systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the problem of estimating the expression Υ(λ) = sup{|∫0xf(t)eiλω(t)dt|: x ∈ [0, 1]}, where the derivative of the function ω(t) is positive almost everywhere on [0, 1]. In particular, for fLp[0, 1], p ∈ (1, 2], we prove the estimate ∥Υ(λ)∥ Lq(ℝ) ≤ CfLp, where 1/p + 1/q = 1. The same estimate is obtained in the space Lq(), where is an arbitrary Carleson measure in the open upper half-plane ℂ+. In addition, we estimate more complicated expressions like Υ(λ) that arise when studying the asymptotics of fundamental solution systems for systems of the form y′ = λρ(x)By +A(x)y +C(x, λ)y as |λ| →∞in appropriate sectors of the complex plane.

Sobre autores

A. Savchuk

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: artem_savchuk@mail.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2019