Uniform Estimates of Remainders in Spectral Analysis of Linear Differential Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the problem of estimating the expression Υ(λ) = sup{|∫0xf(t)eiλω(t)dt|: x ∈ [0, 1]}, where the derivative of the function ω(t) is positive almost everywhere on [0, 1]. In particular, for fLp[0, 1], p ∈ (1, 2], we prove the estimate ∥Υ(λ)∥ Lq(ℝ) ≤ CfLp, where 1/p + 1/q = 1. The same estimate is obtained in the space Lq(), where is an arbitrary Carleson measure in the open upper half-plane ℂ+. In addition, we estimate more complicated expressions like Υ(λ) that arise when studying the asymptotics of fundamental solution systems for systems of the form y′ = λρ(x)By +A(x)y +C(x, λ)y as |λ| →∞in appropriate sectors of the complex plane.

作者简介

A. Savchuk

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: artem_savchuk@mail.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019