Hölder Continuity of Solutions of an Elliptic p(x)-Laplace Equation Uniformly Degenerate on a Part of the Domain
- Авторлар: Alkhutov Y.A.1, Huseynov S.T.2
-
Мекемелер:
- Stoletovs’ Vladimir State University
- Baku State University
- Шығарылым: Том 55, № 8 (2019)
- Беттер: 1056-1068
- Бөлім: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155122
- DOI: https://doi.org/10.1134/S0012266119080068
- ID: 155122
Дәйексөз келтіру
Аннотация
In a domain D ⊂ ℝn divided by a hyperplane Σ into two parts D(1) and D(2), we consider a p(x)-Laplace type equation with a small parameter and with exponent p(x) that has a logarithmic modulus of continuity in each part of the domain and undergoes a jump on Σ when passing from D(2) to D(1). Under the assumption that the equation uniformly degenerates with respect to the small parameter in D(1), we establish the Hölder continuity of solutions with Hölder exponent independent of the parameter.
Авторлар туралы
Yu. Alkhutov
Stoletovs’ Vladimir State University
Хат алмасуға жауапты Автор.
Email: yurij-alkhutov@yandex.ru
Ресей, Vladimir, 600000
S. Huseynov
Baku State University
Хат алмасуға жауапты Автор.
Email: sarvanhuseynov@rambler.ru
Әзірбайжан, Baku, AZ-1073/1
Қосымша файлдар
