Hölder Continuity of Solutions of an Elliptic p(x)-Laplace Equation Uniformly Degenerate on a Part of the Domain
- 作者: Alkhutov Y.A.1, Huseynov S.T.2
-
隶属关系:
- Stoletovs’ Vladimir State University
- Baku State University
- 期: 卷 55, 编号 8 (2019)
- 页面: 1056-1068
- 栏目: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155122
- DOI: https://doi.org/10.1134/S0012266119080068
- ID: 155122
如何引用文章
详细
In a domain D ⊂ ℝn divided by a hyperplane Σ into two parts D(1) and D(2), we consider a p(x)-Laplace type equation with a small parameter and with exponent p(x) that has a logarithmic modulus of continuity in each part of the domain and undergoes a jump on Σ when passing from D(2) to D(1). Under the assumption that the equation uniformly degenerates with respect to the small parameter in D(1), we establish the Hölder continuity of solutions with Hölder exponent independent of the parameter.
作者简介
Yu. Alkhutov
Stoletovs’ Vladimir State University
编辑信件的主要联系方式.
Email: yurij-alkhutov@yandex.ru
俄罗斯联邦, Vladimir, 600000
S. Huseynov
Baku State University
编辑信件的主要联系方式.
Email: sarvanhuseynov@rambler.ru
阿塞拜疆, Baku, AZ-1073/1
补充文件
