Hölder Continuity of Solutions of an Elliptic p(x)-Laplace Equation Uniformly Degenerate on a Part of the Domain


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In a domain D ⊂ ℝn divided by a hyperplane Σ into two parts D(1) and D(2), we consider a p(x)-Laplace type equation with a small parameter and with exponent p(x) that has a logarithmic modulus of continuity in each part of the domain and undergoes a jump on Σ when passing from D(2) to D(1). Under the assumption that the equation uniformly degenerates with respect to the small parameter in D(1), we establish the Hölder continuity of solutions with Hölder exponent independent of the parameter.

作者简介

Yu. Alkhutov

Stoletovs’ Vladimir State University

编辑信件的主要联系方式.
Email: yurij-alkhutov@yandex.ru
俄罗斯联邦, Vladimir, 600000

S. Huseynov

Baku State University

编辑信件的主要联系方式.
Email: sarvanhuseynov@rambler.ru
阿塞拜疆, Baku, AZ-1073/1

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019