Hölder Continuity of Solutions of an Elliptic p(x)-Laplace Equation Uniformly Degenerate on a Part of the Domain
- Autores: Alkhutov Y.A.1, Huseynov S.T.2
-
Afiliações:
- Stoletovs’ Vladimir State University
- Baku State University
- Edição: Volume 55, Nº 8 (2019)
- Páginas: 1056-1068
- Seção: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155122
- DOI: https://doi.org/10.1134/S0012266119080068
- ID: 155122
Citar
Resumo
In a domain D ⊂ ℝn divided by a hyperplane Σ into two parts D(1) and D(2), we consider a p(x)-Laplace type equation with a small parameter and with exponent p(x) that has a logarithmic modulus of continuity in each part of the domain and undergoes a jump on Σ when passing from D(2) to D(1). Under the assumption that the equation uniformly degenerates with respect to the small parameter in D(1), we establish the Hölder continuity of solutions with Hölder exponent independent of the parameter.
Sobre autores
Yu. Alkhutov
Stoletovs’ Vladimir State University
Autor responsável pela correspondência
Email: yurij-alkhutov@yandex.ru
Rússia, Vladimir, 600000
S. Huseynov
Baku State University
Autor responsável pela correspondência
Email: sarvanhuseynov@rambler.ru
Azerbaijão, Baku, AZ-1073/1
Arquivos suplementares
