Remark on the theory of Sergeev frequencies of zeros, signs, and roots for solutions of linear differential equations: II


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The theorem that claims that the spectra (ranges) of upper and lower Sergeev frequencies of zeros, signs, and roots of a linear differential equation of order > 2 with continuous coefficients belong to the class of Suslin sets on the nonnegative half-line of the extended numerical line is inverted for the spectra of upper frequencies of third-order equations under the assumption that the spectra contain zero. In addition, we construct examples of third-order equations with continuous coefficients whose Lebesgue sets of the upper Sergeev frequency of signs belong to the exact first Borel class, and the Lebesgue sets of upper Sergeev frequencies of zeros and roots belong to the exact second Borel class.

Sobre autores

E. Barabanov

Institute of Mathematics

Autor responsável pela correspondência
Email: bar@im.bas-net.by
Belarus, Minsk

A. Voidelevich

Institute of Mathematics

Email: bar@im.bas-net.by
Belarus, Minsk

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016