Remark on the theory of Sergeev frequencies of zeros, signs, and roots for solutions of linear differential equations: II


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The theorem that claims that the spectra (ranges) of upper and lower Sergeev frequencies of zeros, signs, and roots of a linear differential equation of order > 2 with continuous coefficients belong to the class of Suslin sets on the nonnegative half-line of the extended numerical line is inverted for the spectra of upper frequencies of third-order equations under the assumption that the spectra contain zero. In addition, we construct examples of third-order equations with continuous coefficients whose Lebesgue sets of the upper Sergeev frequency of signs belong to the exact first Borel class, and the Lebesgue sets of upper Sergeev frequencies of zeros and roots belong to the exact second Borel class.

Об авторах

E. Barabanov

Institute of Mathematics

Автор, ответственный за переписку.
Email: bar@im.bas-net.by
Белоруссия, Minsk

A. Voidelevich

Institute of Mathematics

Email: bar@im.bas-net.by
Белоруссия, Minsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).