Gellerstedt problem with nonclassical matching conditions for the solution gradient on the type change line with data on internal characteristics


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the solvability of the Gellerstedt problem for the Lavrent’ev–Bitsadze equation. An initial function is posed in the ellipticity domain of the equation on the boundary of the unit half-circle with center the origin. Zero conditions are posed on characteristics in the hyperbolicity domain of the equation. “Frankl-type conditions” are posed on the type change line of the equation. We show that the problem is either conditionally solvable or uniquely solvable. We obtain a closed-form solvability condition in the case of conditional solvability. We derive integral representations of the solution in all cases.

Об авторах

T. Moiseev

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: tsmoiseev@mail.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).