Gellerstedt problem with nonclassical matching conditions for the solution gradient on the type change line with data on internal characteristics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the solvability of the Gellerstedt problem for the Lavrent’ev–Bitsadze equation. An initial function is posed in the ellipticity domain of the equation on the boundary of the unit half-circle with center the origin. Zero conditions are posed on characteristics in the hyperbolicity domain of the equation. “Frankl-type conditions” are posed on the type change line of the equation. We show that the problem is either conditionally solvable or uniquely solvable. We obtain a closed-form solvability condition in the case of conditional solvability. We derive integral representations of the solution in all cases.

作者简介

T. Moiseev

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: tsmoiseev@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016