Thermal and Thermochemical Study of Thaumasite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A sample of natural thaumasite Ca3.0Si(OH)6(CO3)0.9(SO4)1.1·12.3H2O (N’Chwaning mine, Kalahari manganese ore field, South Africa) was studied by powder X-ray diffraction, infrared absorption and Raman spectroscopy, thermal analysis, and microcalorimetry. The process of thermal transformation of thaumasite was studied using the results of FTIR and Raman spectroscopy. The enthalpy of formation from elements ΔfH0(298.15 K) = −8816 ± 30 kJ/mol was determined by high-temperature melt solution calorimetry. The value of the absolute entropy was estimated, and the enthalpy and Gibbs energy of formation of thaumasite of theoretical composition were calculated: 945.4 ± 1.8 J/(mol K), −8699 ± 30 kJ/mol, −7577 ± 30 kJ/mol, respectively.

About the authors

Yu. D. Gritsenko

Faculty of Geology, Lomonosov Moscow State University, 119991, Moscow, Russia; Fersman Mineralogical Museum, Russian Academy of Sciences, 119692, Moscow, Russia

Email: logor48@mail.ru
Россия, 119991, Москва, Ленинские Горы; Россия, 119692, Москва, Ленинский пр., 18

M. F. Vigasina

Faculty of Geology, Lomonosov Moscow State University, 119991, Moscow, Russia

Email: logor48@mail.ru
Россия, 119991, Москва, Ленинские Горы

L. V. Mel’chakova

Faculty of Geology, Lomonosov Moscow State University, 119991, Moscow, Russia

Email: logor48@mail.ru
Россия, 119991, Москва, Ленинские Горы

L. P. Ogorodova

Faculty of Geology, Lomonosov Moscow State University, 119991, Moscow, Russia

Email: logor48@mail.ru
Россия, 119991, Москва, Ленинские Горы

D. A. Ksenofontov

Faculty of Geology, Lomonosov Moscow State University, 119991, Moscow, Russia

Email: logor48@mail.ru
Россия, 119991, Москва, Ленинские Горы

S. K. Dedushenko

NUST MISIS, 119049, Moscow, Russia

Author for correspondence.
Email: logor48@mail.ru
Россия, 119049, Москва, Ленинский пр., 4

References

  1. Базанов С.М. (2004) Механизм разрушения бетона при воздействии сульфатов. Строительные материалы (9), 46-48.
  2. Брыков А.С. (2014) Сульфатная коррозия портландцементных бетонов. Цемент и его применение (6), 96-103.
  3. Гриценко Ю.Д., Дедушенко С.К., Вигасина М.Ф., Паутов Л.А., Голубев Я.В., Огородова Л.П., Ксенофонтов Д.А., Мельчакова Л.В., Перфильев Ю.Д. (2022) Марганцевый стурманит из рудника Н’Чванинг 2 Калахари, ЮАР). ЗРМО CLI (2), 53-69.
  4. Киселева И.А., Огородова Л.П., Топор Н.Д., Чигарева О.Г. (1979) Термохимическое исследование системы СаО–MgO–SiO2. Геохимия (12), 1811-1825.
  5. Котельников А.Р., Кабалов Ю.К., Зезюля Т.Н., Мельчакова Л.В., Огородова Л.П. (2000) Экспериментальное изучение твердого раствора целестин-барит. Геохимия (12), 1286-1293. Kotel’nikov A.R., Kabalov Yu.K., Zezyulya T.N., Mel’chakova L.V., Ogorodova L.P. (2000) Experimental study of celestine-barite solid solution. Geochem. Int. 38(12), 1181-1187.
  6. Огородова Л.П., Киселева И.А., Мельчакова Л.В., Вигасина М.Ф., Спиридонов Э.М. (2011) Калориметрическое определение энтальпии образования пирофиллита. ЖФХ 85(9), 1609-1611.
  7. Огородова Л.П., Гриценко Ю.Д., Косова Д.А., Вигасина М.Ф., Мельчакова Л.В., Ксенофонтов Д.А., Дедушенко С.К. (2021) Физико-химическое и термохимическое изучение эттрингита. Геохимия 66(12), 1156-1166.
  8. Ogorodova L.P., Gritsenko Yu.D., Kosova D.A., Vigasina M.F., Melchakova L.V., Ksenofontov D.A., Dedushenko S.K. (2021) Physicochemical and Thermochemical Study of Ettringite Geochem.Int. 59(12), 1188-1198.
  9. Степанов В.И., Матросова Т.Н., Быкова А.Е. (1981) О генезисе таумасита из различных типов месторождений и его химический состав. Труды Минералогического музея АН СССР 29, 107-110.
  10. Стрелюк Т.Л., Чеснокова Э.Ф., Вернослова З.С. (1976) О находке таумасита на Коршуновском железорудном месторождении (юг Сибирской платформы). Вопросы минералогии и геохимии изверженных пород Восточной Сибири. Иркутск, 24-27.
  11. Штарк Й., Больманн К., Зайфарт К. (1998) Является ли эттрингит причиной разрушения бетона? Цемент и его применение (2), 13-22.
  12. Aguilera J., Valera M.T.B., Vázquez T. (2001) Procedure of synthesis of thaumasite. Cem. Concr. Res. 31, 1163-1168.
  13. Barnett S.J., Adam C.D., Jackson A.R.W. (2000) Solid solutions between ettringite Ca6Al2(SO4)3(OH)12⋅26H2O, and thaumasite Ca3[Si(OH)6][SO4][CO3]·12H2O. J. Mater. Sci. 35, 4109-4114.
  14. Barnett S.J., Macphee D.E., Lachowski E.E., Crammond N.J. (2002) XRD, EDX and IR analysis of solid solution between thaumasite and ettringite. Cem. Concr. Res. 32, 719-730.
  15. Bensted J. (1999) Thaumasite – background and nature in deterioration of cements, mortars and concretes. Cem. Concr. Res. 21, 117-121.
  16. Brough A.R., Atkinson A. (2001) Micro-Raman spectroscopy of thaumasite. Cem. Concr. Res. 31, 421-424.
  17. Chukanov N.V. Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014. 1726 p.
  18. Chukanov N.V., Vigasina M.F. (2020) Vibrational (Infrared and Raman) Spectra of Minerals and Related Compaunds. Springer Nature Switzerland AG. 1376 p.
  19. Crammond N.J. (1985) Thaumasite in failed cement mortars and renders from exposed brickwork. Cem. Concr. Res. 15, 1039-1050.
  20. Drábic M., Gálikova L. (2003) Method of thermal analysis in the detection of thaumasite and its presence in the sulphate-attacted concrete. Solid State Phenom. 90-91, 33-38.
  21. Drábik M., Tunega D., Balkovic S., Fajnor V.S. (2006) Computer simulationnnnnnnns of hydrogen bonds for better understanding of the data of thermal analysis of thaumasite. J. Therm. Anal. Calorim. 85(2), 469-475.
  22. Edge R.A., Taylor H.F.W. (1971) Crystal structure of thausmanite Ca3Si(OH)6 (SO4)(CO3). Acta Crystal. B27, 594-601.
  23. Font-Altaba M. (1960) A thermal study of thaumasite. Miner. Mag. 32, 567-572.
  24. Gatta G.D., McIntyre G.J., Swanson J.G., Jacobsen S.D. (2012) Minerals in cement chemistry: A single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6 (SO4)(CO3) 12H2O. Am. Mineral. 97, 1060-1069.
  25. Grubessi O., Mottana A., Paris E. (1986) Thaumasite from the Tschwinning (N’Chwanning) mine, South Africa. Tschermaks Mineral. Petrog. Mitt. 35, 149-156.
  26. Hartshorn S.A., Sharp J.H., Swamy R.N. (1999) Thaumasite formation in Portland-Limeston cement pastes – A cause of deterioration of Portland cement and related substances in the presence sulphates. Cem. Concr. Res. 29(8), 1331-1240.
  27. IMA list of minerals. http://cnmnc.main.jp/IMA_Master_List_(2021-11).pdf
  28. Jacobsen S.D., Smyth J.R., Swope R.J. (2003) Thermal expansion of hedrated six-coordinate silicon in thaumasite, Ca3[Si(OH)6][SO4][CO3]·12H2O. Phys. Chem. Minerals 30, 321-329.
  29. Kirov G.N., Poulieff C.N. (1968) On the infra-red spectrumand thermal decomposition products of thaumasite, Ca3H2(CO3/SO4)SiO4·13H2O. Miner. Mag. 36, 1003-1011.
  30. Kiseleva I.A., Kotelnikov A.R., Martynov K.V., Ogorodova L.P., Kabalov Yu.K. (1994) Thermodynamic properties of strontianite-witherite solid solution (Sr,Ba)CO3. Phys. Chem. Minerals 21, 392-400.
  31. Kostova B., Petkova V., Kostov-Kytin Vl., Tzvetlanova Y., Avdeev G. (2021) TG/DTG/DSC and high temperature in situ XRD analysis of natural thaumasite. Thermochim. Acta 697, № 178863.
  32. Kresten P., Berggren G. (1976) The thermal decomposition of thaumasite from Mothae kimberlite pipe, Lesotho, South Africa. J. Thermal Anal. 9, 23-28.
  33. Kulik D. GEMS-PSI 2.1, PSI, Villigen, Switzerland, 2006 available at http://leswebpsi.ch/software/GEMS-PSI
  34. Lane M. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. Am. Mineral. 92, 1-18.
  35. Lothenbach B., Winnefeld F. (2006) Thermodynamic modeling of the hydration of Portland cement. Cem. Concr. Res. 36(2), 209-226.
  36. Lothenbach B., Kulik D.A., Matschei T., Balonis M., Baquerizo L., Dilnesa B., Miron G.D., Myers R.J. (2019) Gemdata 18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472-506.
  37. Macphee D.E., Barnett S.J. (2004) Solution proprties of solids in the ettringite – thaumasite solid solution series. Cem. Concr. Res. 34, 1591-1598.
  38. Martinez-Ramirez S., Blanco-Valera M.T., Rapazote J. (2011) Thaumasite formation in sugary solutions: Effect of temperature and sucrose concentration. Constr. Build. Mater. 25, 21-29.
  39. Martucci A., Cruciani G. (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. Phys. Chem. Minerals 33, 723-731.
  40. Matschei T., Glasser F.P. (2015) Thermal stability of thaumasite. Mater. Struct. 48, 2277-2289.
  41. Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Belitsky I.A. (2003) Thermochemical study of natural pollucite. Thermochim. Acta 403, 251-256.
  42. Robie R.A., Hemingway B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 2131, 461 p.
  43. Schmidt T., Lothenbach B., Romer M., Scrivener K., Rentsch D., Figi R. (2008) A thermodynamic and experimental study of the conditions of thaumasite formation. Cem. Concr. Res. 38, 337-349.
  44. Scholtzová E., Kucková L., Kožišek J., Palková H., Tunega D. (2014) Experimental and computational study of thaumasite structure. Cem. Concr. Res. 59, 66-72.
  45. Van Aardt J.H.P., Visser S. (1975) Thaumasite formation: a cause of deterioration of Portland cement and related substances in the presence of sulphates. Cem. Concr. Res. 5(3), 225-232.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (129KB)
3.

Download (482KB)
4.

Download (429KB)
5.

Download (67KB)
6.

Download (138KB)

Copyright (c) 2023 Ю.Д. Гриценко, М.Ф. Вигасина, Л.В. Мельчакова, Л.П. Огородова, Д.А. Ксенофонтов, С.К. Дедушенко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».