Geochemistry and Sr-Nd isotope systematics of apatite from corundum-bearing metasomatites of the Belomorian mobile belt

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The geochemical characteristics (REE, trace elements) and Sr and Nd isotopic composition of apatite from corundum-bearing metasomatites of the Khitoostrov occurrence (Belomorian mobile belt), associated plagioclasites and host rocks, garnet amphibolites and kyanite-garnet-biotite gneisses of the Chupa sequence, have been studied. Apatites from corundum-bearing metasomatites and kyanite-garnet-biotite gneisses are enriched in medium REE and have a negative Eu anomaly (Eu/Eu* 0.20–0.35). Apatite from corundum-bearing rocks differs from apatite from gneisses of Chupa sequence in the increased content of Sr, LREE, decreased content of HREE, as well as a lower 87Sr/86Sr(t) ratio and an increased ɛNd(T) value: 0.70865–0.70896 and –9.3 ± 0.2 versus 0.72533 and –8.1, respectively. Apatite from garnet amphibolites is enriched in average REE without Eu-anomaly (Eu/Eu* 0.98), characterized by a low ɛNd(T) = –9.3 and the lowest 87Sr/86Sr(t) ratio of 0.70560. The Sm-Nd age estimate for apatite is 1.80 ± 0.15 Ga and is consistent with the time of Svecofennian metamorphism in the Belomorian mobile belt. Geochemical features of apatite indicate that the metasomatic alteration of gneisses was carried out under the influence of lower crustal fluid and was accompanied by the inflow of LREE and the removal of HREE. The slightly lower Eu anomaly and higher Ce vs Th and REE vs La/Sm ratios reflect the fact that apatite from corundum-bearing metasomatic rocks was formed in a more oxidizing environment than apatite from host rocks. Neither the corundum-bearing metasomatites and plagioclasites, nor the host rocks revealed any Sr-isotopic and REE-geochemical traces of interaction with surface (meteoric) waters.

全文:

受限制的访问

作者简介

E. Akimova

Saint-Petersburg State University

编辑信件的主要联系方式.
Email: e.akimova@spbu.ru

Institute of Earth Sciences

俄罗斯联邦, Universitetskaya emb., 7–9, St. Petersburg, 199034

A. Kuznetsov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: antonbor9@mail.ru
俄罗斯联邦, Makarova emb., 2, St. Petersburg, 199034

G. Konstantinova

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: e.akimova@spbu.ru
俄罗斯联邦, Makarova emb., 2, St. Petersburg, 199034

S. Skublov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; Empress Catherine II St. Petersburg Mining University

Email: skublov@yandex.ru
俄罗斯联邦, Makarova emb., 2, St. Petersburg, 199034; 21 line, 2, St. Petersburg, 199106

参考

  1. Акимова Е.Ю., Козлов Е.Н., Лохов К.И. (2017) Происхождение корундовых пород Беломорского подвижного пояса по данным геохимии изотопов благородных газов. Геохимия. (11), 1015–1026.
  2. Akimova E. Yu., Kozlov E.N., Lokhov K.I. (2017) Origin of corundum rocks of the Belomorian mobile belt: Evidence from noble gas isotope geochemistry. Geochem. Int. 55 (11), 1000–1009.
  3. Акимова Е.Ю., Скублов С.Г. (2021) Распределение редкоземельных элементов в породообразующих минералах корундсодержащих пород проявления Хитоостров (Северная Карелия). Вестник СПбГУ. Науки о Земле. 66 (4), 686–705.
  4. Акимова Е.Ю., Кольцов А.Б. (2022) Термодинамическое моделирование процесса формирования корундсодержащих метасоматитов Беломорского подвижного пояса (Фенноскандинавский щит). Петрология. 30 (1), 69–90.
  5. Высоцкий С.В., Игнатьев А.В., Левицкий В.И. и др. (2014) Геохимия стабильных изотопов кислорода и водорода корундоносных пород и минералов Северной Карелии как индикатор необычных условий их формирования. Геохимия. (9), 843–853.
  6. Vysotskiy S.V., Ignat’ev A.V., Levitskii V.I. et al. (2014) Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in northern Karelia as an indicator of their unusual genesis. Geochem. Int. 52 (9), 773–782.
  7. Горохов И.М., Кузнецов А.Б., Мележик В.А. и др. (1998) Изотопный состав стронция в верхнеятулийских доломитах туломозерской свиты, Юго-Восточная Карелия. ДАН. 360 (4), 533–536.
  8. Горохов И.М., Мельников Н.Н., Кузнецов А.Б., Константинова Г.В., Турченко Т.Л. (2007). Sm-Nd систематика тонкозернистых фракций нижнекембрийских “синих глин” Северной Эстонии. Литология и полезные ископаемые. (5), 536–551.
  9. Горохов И.М., Кузнецов А.Б., Овчинникова Г.В. и др. (2016) Изотопный состав Pb, Sr, O и C в метакарбонатных породах дербинской свиты (Восточный Саян): хемостратиграфическое и геохронологическое значение. Стратиграфия. Геологическая корреляция. 24 (1), 1–20.
  10. Дубинин А.В. Геохимия редкоземельных элементов в океане. М.: Наука, 2006. 360 с.
  11. Дубинина Е.О., Перчук А.Л., Корепанова О.С. (2012) Изотопно-кислородные эффекты при дегидратации глаукофанового сланца: экспериментальные данные при Р-Т параметрах зоны субдукции. ДАН. 444 (5), 1–5.
  12. Крупенин М.Т., Кузнецов А.Б., Замятин Д.А., Панкрушина Е.А., Лепеха С.В. (2023) Состав и условия образования позднедокембрийских осадочных фосфоритов, венд Среднего Урала. Литология и полензные ископаемые. 2, 111–139.
  13. Крылов Д.П., Сальникова Е.Б., Федосеенко А.М. и др. (2011) Возраст и происхождение корундсодержащих пород о-ва Хитоостров, Северная Карелия. Петрология. 19 (1), 80–88.
  14. Крылов Д.П., Глебовицкий В.А., Скублов С.Г., Толмачева Е.В. (2012) Редкоземельные и редкие элементы в разновозрастных цирконах из корундсодержащих пород Хитоострова (Северная Карелия). ДАН. 443 (3), 352–357.
  15. Кузнецов А.Б., Горохов И.М., Азимов П.Я., Дубинина Е.О. (2021) Sr- и C-хемостратиграфический потенциал палеопротерозойских осадочных карбонатов в условиях среднетемпературного метаморфизма: мраморы Рускеалы, Карелия. Петрология. 29 (2), 172–194.
  16. Ларин А.М. Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 2011. 402 с.
  17. Лебедев В.К., Калмыкова Н.А., Нагайцев Ю.В. (1974) Корунд-ставролит-роговообманковые сланцы Беломорского комплекса. Советская геология. (9), 78–89.
  18. Левский Л.К., Морозова И.М., Левченков О.А. и др. (2009) Изотопно-геохронологические системы в метаморфических породах (о-в Поньгома, Беломорский подвижный пояс). Геохимия. (3), 227–244.
  19. Levsky L.K., Morozova I.M., Levchenkov O.A. et al. (2009) Isotopic-geochronological systems in metamorphic rocks: Pon’goma Island, Belomorian mobile belt. Geochem. Int. 47 (3), 215–230.
  20. Маслов А.В. (2017) Доордовикские фосфориты и палеоокеанография: краткий геохимический экскурс в систематику редкоземельных элементов. Литосфера. 1, 5‒30.
  21. Овчинникова Г.В, Кузнецов А.Б., Васильева И.М., Горохов И.М., Крупенин М.Т., Турченко Т.Л. (2008) Pb-Pb возраст преобразования осадочных фосфоритов в нижнерифейских карбонатных отложениях, саткинская свита Южный Урал. Стратиграфия. Геологическая корреляция. 16 (2), 35–40.
  22. Овчинникова Г.В., Кузнецов А.Б., Васильева И.М., Горохов И.М., Крупенин М.Т., Гороховский Б.М., Маслов А.В. (2013) Pb-Pb возраст и Sr-изотопная характеристика среднерифейских фосфоритовых конкреций: зигазино-комаровская свита Южного Урала. ДАН. 451(4), 430–434.
  23. Саватенков В.М., Морозова И.М., Левский Л.К. (2003) Sm-Nd, Rb-Sr и K-Ar изотопные системы в условиях регионального метаморфизма (Беломорский пояс, Кольский п-в). Геохимия. (3), 275–292.
  24. Savatenkov V.M., Morozova I.M., Levskii L.K. (2003) Sm-Nd, Rb-Sr, and K-Ar isotopic systems under regional metamorphism: Evidence from the Belomorian Belt, Kola Peninsula. Geochem. Int. 41 (3), 245–260.
  25. Серебряков Н.С. (2004) Петрология корундсодержащих пород чупинской толщи Беломорского подвижного пояса (на примере Чупинского сегмента). Автореф. дис. ... к.г.-м.н. М., ИГЕМ РАН. 30 с.
  26. Серебряков Н.С., Астафьев Б.Ю., Воинова О.А., Пресняков С.Л. (2007) Первое локальное Th-U-Pb датирование циркона метасоматитов Беломорского подвижного пояса. ДАН. 413 (3), 388–392.
  27. Скублов С.Г., Азимов П.Я., Ли С.Х. и др. (2017) Полиметаморфизм чупинской толщи Беломорского подвижного пояса (Фенноскандия) по данным изотопно-геохимического (U-Pb, REE, O) исследования циркона. Геохимия. (1), 3–16.
  28. Skublov S.G., Azimov P. Ya., Li X.-H. et al. (2017) Polymetamorphism of the Chupa Sequence of the Belomorian mobile belt (Fennoscandia): Evidence from the isotope-geochemical (U-Pb, REE, O) study of zircon. Geochem. Int. 55 (1), 47–59.
  29. Терехов Е.Н., Левицкий В.И. (1991) Геолого-структурные закономерности размещения корундовой минерализации в Северо-Западном Беломорье. Известия вузов. Геология и разведка. (6), 3–13.
  30. Фор Г. (1989) Основы изотопной геологии. М.: Мир, 590 с.
  31. Adlakha E., Hanley J.J., Falck H., Boucher B. (2018) The origin of mineralizing hydrothermal fluids recorded in apatite chemistry at the Cantung W-Cu skarn deposit, NWT, Canada. Eur. J. Mineral. (30), 1095–1113.
  32. Alexander B.W., Bau M., Andersson P., Dulski P. (2008) Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim. Cosmochim. Acta. (72), 378–394.
  33. Alibo D.S., Nozaki Y. (1999) Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta. (63), 363–372.
  34. Antonakos A., Liarokapis E., Leventouri T. (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials. (28), 3043–3054.
  35. Bau M., Dulski P. (1999) Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. (155), 77–90.
  36. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I. (2002) Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor. (76), 45–69.
  37. Bindeman I.N., Serebryakov N.S. (2011) Geology, Petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth Planet. Sci. Lett. (306), 163–174.
  38. Bindeman I.N., Serebryakov N.S., Schmitt A.K. et al. (2014) Field and microanalytical isotopic investigation of ultradepleted in 18O Paleoproterozoic “Slushball Earth” rocks from Karelia, Russia. Geosphere. (10), 308–339.
  39. Bruand E., Fowler M., Storey C., Darling J. (2017) Apatite trace element and isotope applications to petrogenesis and provenance. Am. Mineral. (102), 75–84.
  40. Cao M., Li G., Qin K., Seitmuratova E.Y., Liu Y. (2011) Major and trace element characteristics of apatites in granitoids from central Kazakhstan: implications for petrogenesis and mineralization. Resour. Geol. (62), 63–83.
  41. Cherniak D.J. (2010) Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime. Rev. Mineral. Geochem. 72 (1), 827–869.
  42. Deng Y.N., Ren J.B., Guo Q.J. et al. (2017) Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Scientific Reports. (7), 16539. https://doi.org/10.1038/s41598-017-16379-1.
  43. Drake M. (1975) The oxidation state of europium as an indicator of oxygen fugacity. Geochim. Cosmochim. Acta. (39), 55–64.
  44. Fisher C.M., Bauer A.M., Vervoort J.D. (2020) Disturbances in the Sm–Nd isotope system of the Acasta Gneiss Complex—Implications for the Nd isotope record of the early Earth. Earth Planet. Sci. Lett. (530), 115900. https://doi.org/10.1016/j.epsl.2019.115900
  45. Hammerli J., Kemp A.I.S., Spandler C. (2014) Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals. Earth Planet. Sci. Lett. (392), 133–142.
  46. Hammerli J., Kemp A.I.S., Whitehouse M.J. (2019) In situ trace element and Sm-Nd isotope analysis of accessory minerals in an Eoarchean tonalitic gneiss from Greenland: Implications for Hf and Nd isotope decoupling in Earth’s ancient rocks. Chem. Geol. (524), 394–405.
  47. Hammerli J., Kemp T.I.S. (2021) Combined Hf and Nd isotope microanalysis of coexisting zircon and REE-rich accessory minerals: High resolution insights into crustal processes. Chem. Geol., 120393. https://doi.org/10.1016/j.chemgeo.2021.120393.
  48. Harlov D.E. (2015) Apatite: a fingerprint for metasomatic processes. Elements. 11 (3), 171–176.
  49. Henrichs I.A., O’Sullivan G.J., Chew D.M. et al. (2018) The trace element and U-Pb systematics of metamorphic apatite. Chem. Geol. (483), 218–238.
  50. Henrichs I.A., Chew D.M., Sullivan G.J.O. et al. (2019) Trace element (Mn-Sr-Y-Th-REE) and U-Pb isotope systematics of metapelitic apatite during progressive greenschist- to amphibolite-facies Barrovian metamorphism. Geochem. Geophys. Geosyst. 20 (8), 4103–4129.
  51. Herwartz D., Pack A., Krylov D. et al. (2015) Revealing the climate of snowball Earth from δ17O systematics of hydrothermal rocks. Proceedings of the National Academy of Sciences of the United States of America (PNAS). 112 (17), 5337–5341.
  52. Janots E., Austrheim H., Spandler C., Hammerli J., Trepmann C.A., Berndt J., Magnin V., Kemp A.I.S. (2018) Rare earth elements and Sm-Nd isotope redistribution in apatite and accessory minerals in retrogressed lower crust material (Bergen Arcs, Norway). Chem. Geol. (484), 120–135.
  53. Li X.-C., Harlov D.E., Zhou M.-F., Hu H. (2022a) Metasomatic modification of Sr isotopes in apatite as a function of fluid chemistry. Geochim. Cosmochim. Acta (323), 123–140.
  54. Li X.-C., Harlov D.E., Zhou M.-F., Hu H. (2022b) Experimental investigation into the disturbance of the Sm-Nd isotopic system during metasomatic alteration of apatite. Geochim. Cosmochim. Acta 330 (1), 191–208.
  55. Liu P., Massonne H.-J., Jin Z. et al. (2017) Diopside, apatite, and rutile in an ultrahigh pressure impure marble from the Dabie Shan, eastern China: A record of eclogite facies metasomatism during exhumation. Chem. Geol. (466), 123–139.
  56. Liu Y., Fan Y., Zhou T. et al. (2020) Hydrothermal fluid characteristics and implications of the Makou IOA deposit in Luzong Basin, eastern China. Ore Geology Reviews. (127), 103867. https://doi.org/10.1016/j.oregeorev.2020.103867.
  57. Mao M., Rukhlov A.S., Rowins S.M. et al. (2016) Detrital Apatite Trace-Element Compositions: a Robust New Tool for Mineral Exploration. Econ. Geol. (111), 1187–1222.
  58. McArthur J.M., Walsh J.N. (1985) Rare-earth geochemistry of phosphorites. Chem. Geol. 47, 191–220.
  59. McDonough W.F., Sun S.S. (1995) The composition of the Earth. Chem. Geol. (120), 223–253.
  60. O’Sullivan G., Chew D., Kenny G. et al. (2020) The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. (201), 103044. https://doi.org/10.1016/j.earscirev.2019.103044.
  61. Özyurt M., Kirmaci M.Z., Al-Aasm I., Hollis C., Tasli K., Kandemir R. (2020) REE characteristics of lower cretaceous limestone succession in Gümüshane, NE Turkey: implications for ocean paleoredox conditions and diagenetic alteration. Minerals. (10), 683. https://doi.org/10.3390/min10080683.
  62. Pourmand A., Dauphas N., Ireland T.J. (2012) A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. (291), 38–54.
  63. Spear F.S., Pyle J.M. (2002) Apatite, Monazite, and Xenotime in Metamorphic Rocks. Rev. Mineral. Geochem. (48), 293–335.
  64. Stüeken E.E., Kuznetsov A.B., Vasilyeva I.M., Krupenin M.T., Bekker A. (2021) Transient deep-water oxygenation recorded by rare Mesoproterozoic phosphorites, South Urals. Precambrian Research. 360, 106242. https://doi.org/10.1016/j.precamres.2021.106242.
  65. Xiqiang L., Hui Z., Yong T., Yunlong L. (2020) REE Geochemical Characteristic of Apatite: Implications for Ore Genesis of the Zhijin Phosphorite. Minerals. (10), 1012. https://doi.org/10.3390/min10111012.
  66. Zakharov D.O., Bindeman I.N., Slabunov A.I. et al. (2017) Dating the Paleoproterozoic snowball Earth glaciations using contemporaneous subglacial hydrothermal systems. Geology. 45 (7), 667–670.
  67. Zakharov D.O., Bindeman I.N., Serebryakov N.S. et al. (2019) Low δ18O rocks in the Belomorian belt, NW Russia, and Scourie dikes, NW Scotland: A record of ancient meteoric water captured by the early paleoproterozoic global mafic magmatism. Precambrian Research. (333), 105431. https://doi.org/10.1016/j.precamres.2019.105431.
  68. Zhao X.F., Zhou M.F., Gao J.F. et al. (2015) In situ Sr isotope analysis of apatite by LA-MC-ICPMS: Constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Miner. Deposita. (50), 871–884.
  69. Zirner A.L.K., Marks M.A.W., Wenzel T. et al. (2015) Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: Th Ilímaussaq complex, South Greenland. Lithos. (228–229), 12–22.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the geological structure of the Chitoostrov Formation (according to Bindeman et al, 2014, with modifications) with sampling points. 1 - migmatized garnet-biotite gneisses; 2 - migmatized kyanite-garnet-biotite gneisses; 3 - metagabbro; 4 - migmatized garnet amphibolites; 5 - rocks of metasomatic zones 1 (paragenesis Pl + Grt + Bt + Ky), 3a (paragenesis Pl + Grt + Bt + + + Crn) (the scheme of metasomatic zonation of corundum-bearing rocks is given in (Akimova, Koltsov, 2022); 6 - rocks of zones 2 (Pl + Grt + Bt + St), 3b (Pl + Grt + Cam + St); 7 - rocks of zone 4 (Pl + Grt + Cam + Crn); 8 - plagioclasites; 9 - pegmatites; 10 - elements of occurrence. The red asterisk on the inset shows the location of the Khitoostrov occurrence within the White Sea province of the Fennoscandinavian Shield.

下载 (291KB)
3. Fig. 2. View of apatite grains (Ap) in corundum-bearing rocks (a) and chemical composition of apatite from different host rocks (b). Crn - corundum, Bt - biotite, Pl - plagioclase, Ky - kyanite, Cam - calcic amphibole, Grt - garnet.

下载 (531KB)
4. Fig. 3. Raman spectra of apatite from corundum-bearing rocks and host gneisses. The position of the v3 CO3 peak is according to (Antonakos et al., 2007).

下载 (215KB)
5. Fig. 4. PAAS-normalized REE distribution spectra in apatite from corundum-bearing metasomatites (zone 2 - Khi-008A, zone 4 - Khi-010, Ea16-005II), plagioclasites (Ea16-005I) and garnet amphibolites (Khi-004) of the Khitoostrov manifestation, kyanite-garnet-biotite gneisses of the Chupa Formation (Ch-1). For comparison, the composition of porewater of bottom marine sediments (Porewater) according to (Deng et al., 2017) is also plotted.

下载 (262KB)
6. Fig. 5. Sm-Nd diagram for apatite (Table 2). T1 - linear dependence calculated using all points; T2 - after excluding the apatite point from plagioclasite (Ea16-005I).

下载 (131KB)
7. Fig. 6. Apatite composition in the Sm/Yb vs Y/Ho diagram and comparison with seawater and high-temperature hydrothermal fluid composition - from Alexander et al., 2008.

下载 (83KB)
8. Figure 7. Apatite composition in the Ce/Ce* vs Eu/Eu* genetic diagram and comparison with the fields of different redox settings of mineral formation by (Cao et al., 2011).

下载 (101KB)
9. Fig. 8. Apatite composition in the Ce vs Th (a) and REE vs La/Sm (b) diagrams used to estimate redox conditions.Field I corresponds to rocks with Fe2O3/FeO < 1, field II - to rocks with Fe2O3/FeO > 1 (Belousova et al., 2002).

下载 (120KB)
10. Fig. 9.Apatite composition on the Mn/Sr vs Th genetic diagram with plotted fields and comparison with the composition of different metamorphic rocks (by Henrich et al., 2018).Notation: 1 - metapelites, 2 - metabasites, 3 - orthogneisses, 4 - paragneisses.

下载 (138KB)
11. Fig. 10.Apatite composition on the Sr/Y vs LREE genetic diagram with fields of major rock types by (O'Sullivan et al., 2020). Notation: ALK - alkaline igneous rocks, HM - high metamorphic rocks and migmatites, IM - I-type granitoids and mafic igneous rocks, LM - low and middle metamorphic rocks, metasomatites, S - S-type granitoids, UM - ultramafics, including carbonatites, lherzolites, pyroxenites.The arrow shows the inferred trend of fluid recycling.

下载 (120KB)
12. Fig. 11.Position of apatite points (Table 2) in the 87Sr/86Sr(t) - ɛNd(T) diagram with fields of possible fluid sources: mantle, granulite-lower crustal, and upper crustal (after Fore, 1989). The dotted lines represent the mixing between sources.For comparison, we present 87Sr/86Sr(t) - ɛNd(T) data for Paleoproterozoic amphibolites and biotite gneisses of the Tersky block of the White Sea belt and apatites from them (Savatenkov et al., 2003; Levskii et al., 2009) and for Paleoproterozoic shale metagraywackes of the Ladoga series (Larin, 2011).

下载 (147KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».