Crystallization of borosilicate melts containing Na and Cs: results of Raman spectroscopy
- Authors: Koroleva O.N.1,2, Nevolina L.A.1,2, Krivenko A.P.2
-
Affiliations:
- South Urals Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences
- Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
- Issue: Vol 69, No 10 (2024)
- Pages: 914–922
- Section: Articles
- URL: https://journal-vniispk.ru/0016-7525/article/view/277512
- DOI: https://doi.org/10.31857/S0016752524100035
- EDN: https://elibrary.ru/ILYHUW
- ID: 277512
Cite item
Abstract
The structure of borosilicate glass and the glass-ceramic material obtained from it was studied using Raman spectroscopy for samples of two compositions with different Cs/Na ratios. The materials were synthesized in two different modes. The anionic environment of cesium in glass and the structural rearrangements of the network during the formation of crystalline phases have been studied. X-ray diffraction patterns of glass-ceramic samples made it possible to determine the only crystalline phase of CsBSi2O6, the structure of which was not unambiguously determined. Glass ceramics of the studied composition can be used to immobilize cesium by incorporating it into crystalline phases of the CsBSi2O6 composition, while sodium remains located in the glassy matrix. As a result of the research, it was shown that the composition of the crystalline phase does not depend on the initial ratio of alkali cations, while the ratio between the amounts of ordered and amorphous phases depends on the kinetics of the melt cooling process.
Keywords
Full Text

About the authors
O. N. Koroleva
South Urals Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences; Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: olgankoroleva@gmail.com
Institute of Mineralogy
Russian Federation, Ilmen State Reserve, Miass, 456317; Kosygina st., 19, Moscow, 119991L. A. Nevolina
South Urals Research Center of Mineralogy and Geoecology of the Urals Branch of the Russian Academy of Sciences; Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: olgankoroleva@gmail.com
Institute of Mineralogy
Russian Federation, Ilmen State Reserve, Miass, 456317; Kosygina st., 19, Moscow, 119991A. P. Krivenko
Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences
Email: olgankoroleva@gmail.com
Russian Federation, Kosygina st., 19, Moscow, 119991
References
- Быков В.Н., Королева О.Н., Осипов А.А. (2009) Структура силикатных расплавов по данным спектроскопии комбинационного рассеяния и термодинамического моделирования. Геохимия (11), 1138–1145.
- Bykov V.N., Koroleva O.N., Osipov A.A. (2009) Structure of silicate melts: Raman spectroscopic data and thermodynamic simulation results. Geochem. Int. 47 (11), 1067–1074.
- Деркачева Е.С. (2021) Фазообразование и характеризация борополлуцитов с примесями Ba. Физика и химия стекла 47, 714–720.
- Лаверов Н.П., Дмитриев С.А., Величкин В.И., Омельяненко Б.И. (2009) Условия безопасной изоляции жидких отходов низкого и среднего уровня активности. Геоэкология. Инженерная геология. Гидрогеология. Геокриология (3), 195–213.
- Малинина Г.А. (2016) Строение и гидролитическая устойчивость самарий, гафний и урансодержащих стеклокерамических материалов для иммобилизации твердых радиоактивных отходов. дис. ... канд. хим. наук. Москва, 117 с.
- Bubnova R.S., Stepanov N.K., Levin A.A., Filatov S.K., Paufler P., Meyer D.C. (2004) Crystal structure and thermal behaviour of boropollucite CsBSi2O6. Solid State Sci. 6, 629–637.
- Donald I.W. (2010) Waste immobilization in glass and ceramic based hosts: Radioactive, toxic and hazardous wastes. Chichester: Wiley, 507 p.
- Furukawa T., White W.B. (1981) Raman spectroscopic investigation of sodium borosilicate glass structure. J. Mater. Sci. 16, 2689–2700.
- Jantzen C.M. (2011) Historical development of glass and ceramic waste forms for high level radioactive waste Handbook of advanced radioactive waste conditioning technologies. Eds. Cambridge: Woodhead, 159–172.
- Kaneko S., Tokuda Y., Takahashi Y., Masai H., Ueda Y. (2017) Structural analysis of mixed alkali borosilicate glasses containing Cs+ and Na+ using strong magnetic field magic angle spinning nuclear magnetic resonance. J. Asian Ceram. Soc. 5 (1), 7–12.
- Kim M., Heo J. (2015) Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing. J. Nucl. Mater. 467, 224–228.
- Koroleva O.N. (2017) The structure of lithium silicate melts revealed by high-temperature Raman spectroscopy. Spectrosc. Lett. 50 (5), 257–264.
- Koroleva O.N., Nevolina L.A., Korobatova N.M. (2023) Glass-Containing Matrices Based on Borosilicate Glasses for the Immobilization of Radioactive Wastes. J. Compos. Sci. 7 (12), 505.
- Koroleva O.N., Shabunina L.A. (2013) Effect of the ratio R = [Na2O]/[B2O3] on the structure of glass in the Na2O-B2O3-SiO2 system. Russ. J. Gen. Chem. 83 (2), 238–244.
- Koroleva O.N., Shabunina L.A., Bykov V.N. (2011) Structure of borosilicate glass according to raman spectroscopy data. Glass and Ceram. 67 (11), 340–342.
- Krzhizhanovskaya M.G., Bubnova R.S., Filatov S.K. (2018) Powder X-Ray Diffraction Data on Polymorphism of RbBSi2O6 and Crystal Structure of Its High-Temperature Modification. J. Struct. Chem. 59, 1995–2000.
- Manara D., Grandjean A., Neuville D. (2009) Advances in Understanding the Structure of Borosilicate Glasses: A Raman Spectroscopy Study. Amer. Miner. 94, 777–784.
- McCloy J.S., Goel A. (2017) Glass-ceramics for nuclear-waste immobilization. MRS Bull. 42 (3), 233–240.
- Mysen B., Richet P. (2019) Glass versus melt Silicate glasses and melts (second edition) (Eds. Mysen B., Richet P.). Elsevier, 39–75.
- Nevolina L.A., Koroleva O.N., Tyurnina N.G., Tyurnina Z.G. (2021) Study of Alkaline Earth Borosilicate Glass by Raman Spectroscopy. Glass Phys. Chem. 47 (1), 24–29.
- Nevolina L.A., Shtenberg M.V., Zherebtsov D.A., Koroleva O.N. (2023) Structure and crystallizability of K2O-B2O3-SiO2 and K2O-B2O3-GeO2 glasses: Effect of composition and heat treatment mode. Ceram. Int. 49, 37228–37237.
- Ojovan M.I., Petrov V.A., Yudintsev S.V. (2021) Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustain. 13 (8)
- Osipov A.A., Osipova L.M., Zainullina R.T. (2015) Structural units in alkali borate glasses and melts. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 56 (6), 255–262.
- Parkinson B.G., Holland D., Smith M.E., Howes A.P., Scales C.R. (2005) The effect of Cs2O additions on HLW wasteform glasses. J. Non-Cryst. Solids. 351, 2425–2432.
- Serbena F.C., Mathias I., Foerster C.E., Zanotto E.D. (2015) Crystallization toughening of a model glass-ceramic. Acta Mater. 86, 216–228.
- Zhu H., Wang F., Liao Q., Zhu Y. (2020) Synthesis and characterization of zirconolite-sodium borosilicate glass-ceramics for nuclear waste immobilization. J. Nucl. Mater. 532, 152026.
Supplementary files
