Morphological features and genesis of the interpenetration twins of cubic diamond crystals
- Authors: Pavlushin А.D.1
-
Affiliations:
- Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 70, No 2 (2025)
- Pages: 146-157
- Section: Articles
- URL: https://journal-vniispk.ru/0016-7525/article/view/294901
- DOI: https://doi.org/10.31857/S0016752525020032
- EDN: https://elibrary.ru/GPUTLD
- ID: 294901
Cite item
Abstract
The paper presents analysis of the crystal morphology of two similarly shaped interpenetration twins of cubic crystals: the Chinese Lantern diamond (Arkhangelsk diamond mining province, provided for this study by courtesy of the ALROSA company) and a diamond crystal from Brazil, which has been studied in much detail by A.E. Fersman. Comparison of data on these diamonds, which were obtained using original methodological techniques for interpreting morphological indications of crystal growth and dissolution, revealed a number of crystal morphological features of crystals characteristic of regular accretions of this type. In addition to tetragonal pits characteristic of the cuboids, ribbon-shaped, jagged, and drop-shaped relief features typical of surface dissolution, a new type of symmetrical sawtooth microrelief associated with etching of octahedral layers of cuboid growth was discovered on the diamond from the Arkhangelsk province. In accordance with the height and direction of the steps of the relief pattern, the development sequence of the aforementioned types of microrelief is determined according to the increase in the depth of dissolution and the degree of change in the curvature of the surface of the tetrahexahedron on twin cuboids. The genesis of the characteristic equatorial sharp ridge of octahedron faces encircling the twinning plane was revealed. It is demonstrated to has been formed in relation to an early stage of the systematic coalescence of fibrous diamond cuboids and to be a determining condition of its development, first as a interpenetration twin of flat-faced octahedral crystals. Crystal morphological similarities between indications of dissolution on curved tetrahexahedra from kimberlites of the Arkhangelsk pipes and placer sources in Brazil and the north of the Yakutian diamond-bearing province is discussed.
Full Text

About the authors
А. D. Pavlushin
Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: pavlushin@diamond.ysn.ru
Russian Federation, Lenin Ave., 39, Yakutsk, 677000
References
- Афанасьев В.П., Ефимова Э.С., Зинчук Н.Н., Коптиль В.И. (2000) Атлас морфологии алмазов России. Новосибирск: Изд. СО РАН, НИЦ ОИГГМ, 298 с.
- Бартошинский З.В., Квасница В.Н. (1991) Кристалломорфология алмаза из кимберлитов. Киев: Изд. Наукова думка, 172 с.
- Кудрявцева Г.П., Посухова Т.В., Вержак В.В., Веричев Е.М., Гаранин В.К., Головин Н.Н., Зуев В.В. (2005) Атлас. Морфогенез алмаза и минералов-спутников в кимберлитах и родственных породах Архангельской кимберлитовой провинции. М.: Изд. Полярный круг, 624 с.
- Кухаренко А.А. (1955) Алмазы Урала. М.: Государственное научно-техническое издательство литературы по геологии и охране недр, 513 с.
- Орлов Ю.Л. (1963) Морфология алмаза. М.: Изд. АН СССР, 236 с.
- Орлов Ю.Л. (1984) Минералогия алмаза. М.: Изд. Наука, 264 с.
- Павлушин А.Д., Зедгенизов Д.А., Пироговская К.Л. (2017) Кристалломорфологическая эволюция роста и растворения кривогранных кубических кристаллов алмаза из россыпей Анабарского алмазоносного района. Геохимия. (12), 1141-1152.
- Pavlushin A.D., Zedgenizov D.A., Pirogovskaya K.L. (2017) Crystal Morphological Evolution of Growth and Dissolution of Curve-Faced Cubic Diamonds from Placers of the Anabar Diamondiferous Region. Geochem. Int. 55(12), 1153–1163.
- Павлушин А.Д., Бардухинов Л.Д., Коногорова Д.В. (2021) Алмазные раритеты: Китайский фонарик. Наука из первых рук. 92(3/4), 44–53.
- Ферсман А.Е. (1955) Кристаллография алмаза. Л.: Изд. АН СССР, 568 с.
- Aoki Y. (1979) Morphology of crystals grown from highly supersaturated solutions. Mem. Sci., Kyushu Univ., Ser. D. 24(2), 75–108.
- Сasanova R. (1972) A Repeated Twin in Natural Diamond from Tortiya, Ivory Coast. American Mineralogist. 57, 1871– 1873.
- Fersmann A., Goldschmidt V. (1911) Der Diamant. Eine Studie Miteinem Atlas von 43 Tafeln. Heidelberg: Carl Winters Universitätsbuchhandlung, 274 p.
- Garanin V., Garanin K., Kriulina G., Samosorov G. (2021) Diamonds from the Arkhangelsk Province, NW Russia. Springer International Publishing AG, Switzerland, 248 р.
- Goldschmidt V. (1904) Zur Mechanik des Lösungsprozesses. Zeitschr. Krist. 38, 656.
- Goldschmidt V., Wright. (1903) Über Atzfiguren, Lichtfiguren und Lösungskörper. N. Jahrb. Miner. 17, 355.
- Goldschmidt V., Wright. (1904) Über Lösungskörper und Lösungs-Geschwindigkeiten. N. Jahrb. Miner. 18, 335.
- Lu T.J., Ke J., Qiu Z.L. (2018) Surface dissolution features and contact twinning in natural diamonds. J. Mineral. Geochem. 195, 145–153.
- Machado W.G., Moore M., Yacoot A. (1998) Twinning in Natural Diamond. II. Interpenetrant Cubes. Journal Applied Crystallography. 31, 777–782.
- Senechal M.L. (1976) Geometry and Crystal Symmetry. Neues Jahrbuch Mineralogie. Monatsh. (11), 518–524.
- Spetsius Z.V., Taylor L.A. (2008) Diamonds of Siberia: Photogtraphic Evidence for their Origin. Tranquility Base Press: Lenoir City, Tennessee, USA, 278 p.
- Sunagawa I. (1984) Growth of Crystals in Nature. In Materials Science of the Earth’s Interior. Terrapub: Tokyo, Japan, 63–105.
Supplementary files
