Оценка кинетических условий применения кварцевого геотермометра: эксперимент и моделирование
- Авторы: Алексеев В.А.1
-
Учреждения:
- Институт геохимии и аналитической химии им. В. И. Вернадского РАН
- Выпуск: Том 70, № 7 (2025)
- Страницы: 559-569
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0016-7525/article/view/308916
- DOI: https://doi.org/10.31857/S0016752525070045
- EDN: https://elibrary.ru/qezbdi
- ID: 308916
Цитировать
Аннотация
Кварцевый геотермометр (КГ) позволяет определять температуру геотермального резервуара (ГР), расположенного на глубине, по концентрации SiO2 (m) в растворе, изливающемся из этого резервуара на поверхность. В первоначальном моделировании КГ была допущена ошибка, занизившая скорость осаждения кварца, и, таким образом, необоснованно расширилась область применения КГ. Другой недостаток раннего моделирования заключался в игнорировании возможности осаждения метастабильных модификаций кремнезема. Для устранения этих недостатков выполнено новое математическое моделирование КГ методом конечных разностей с использованием актуальных кинетических данных. Достоверность данных оценивалась их использованием в моделировании медленного охлаждения системы кварц–вода и сравнением результатов моделирования с экспериментальными результатами этого процесса. Наилучшее согласие экспериментов и расчетов получено при использовании в расчетах двухступенчатого осаждения SiO2, когда выше и ниже растворимости аморфного кремнезема (АК) использовались разные кинетические константы, которые описывали осаждение, соответственно, АК и других метастабильных модификаций кремнезема. Результаты нового моделирования КГ с использованием новых кинетических данных были одинаковыми при одинаковом отношении двух исходных параметров, которые характеризуют площадь поверхности осаждения, нормированную к массе воды (S/M), и скорость подъема раствора (v). Определены реальные граничные значения этого отношения, S/M и v, при которых модель предсказывает верные показания КГ для разных температур раствора в ГР и у поверхности. Кинетические уравнения, использованные при моделировании, не учитывают многие особенности механизма реакции осаждения кремнезема. Экспериментальное изучение этих особенностей позволит создать более точную модель, приближенную к реальным природным системам.
Об авторах
В. А. Алексеев
Институт геохимии и аналитической химии им. В. И. Вернадского РАН
Автор, ответственный за переписку.
Email: alekseyev-v@geokhi.ru
ул. Косыгина, 19, Москва, 119991 Россия
Список литературы
- Алексеев В.А. (1997) Кинетические особенности действия Na/K геотермометра. Геохимия (11), 1128–1138.
- Alekseyev V.A. (1997) Kinetic characteristics of the Na/K geothermometer operation. Geochem. Int. 35 (11), 997–1006.
- Алексеев В.А. Кинетика и механизмы реакций полевых шпатов с водными растворами. М.: Геос, 2002. 256 с.
- Алексеев В.А., Медведева Л.С., Старшинова Н.П. (2009) Кинетика осаждения кремнезема на затравки кварца при 200–300 °C. Геохимия (7), 775–779.
- Alekseyev V.A., Medvedeva L.S., Starshinova N.P. (2009) Kinetics of silica precipitation on quartz seeds at 200–300 °C. Geochem. Int. 47 (7), 731–735.
- Алексеев В.А., Бурмистров А.А., Громяк И.Н. (2021) Превращение кварца в опал у границы вода-пар. Геохимия 66 (4), 329–340.
- Alekseyev V.A., Burmistrov A.A., Gromiak I.N. (2021) Quartz transformation into opal at the water-vapor interface. Geochem. Int. 59 (4), 377–387.
- Вольдек А.И. (1978) Электрические машины. Л.: Энергия, 832 с.
- Шестакова А.В., Гусева Н.В. (2018) Применение геотермометров для оценки глубинных температур циркуляции термальных вод на примере Восточной Тувы. Известия Томского политехнического университета. Инжиниринг георесурсов 329 (1), 25–36.
- Чудаев О.В. (2003) Состав и условия образования современных гидротермальных систем Дальнего Востока России. Владивосток: Дальнаука, 216 с.
- Abdelali A., Nezli I.E., Kechiched R., Attalah S., Benhamida S.A., Pang Z. (2020) Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: Insights from cations, silica and SO4–H2O isotope geothermometers. Appl. Geochem. 113, art. No 104492.
- Arnórsson S. (1970) Underground temperatures in hydrothermal areas in Iceland as deduced from the silica content of the thermal water. Geothermics 2 (Part 1), 536–541.
- Bird G., Boon J., Stone T. (1986) Silica transport during steam injection into oil sands. 1. Dissolution and precipitation kinetics of quartz: new results and review of existing data. Chem. Geol. 54 (1/2), 69–80.
- Bohlmann E.G., Mesmer R.E., Berlinski P. (1980) Kinetics of silica deposition from simulated geothermal brines. Soc. Petrol. Eng. J. 20 (04), 239–248.
- Carroll S., Mroczek E., Alai M., Ebert M. (1998) Amorphous silica precipitation (60 to 120 °C): Comparison of laboratory and field rates. Geochim. Cosmochim. Acta 62 (8), 1379–1396.
- Faimon J. (2005) Total dynamics of quartz-water system at ambient conditions. Aquatic Geochemistry 11, 139–172.
- Faimon J., Blecha M. (2008). Interaction of freshly precipitated silica gel with aqueous silicic acid solutions under ambient and near neutral pH-conditions: A detailed analysis of linear rate law. Aquat. Geochem. 14 (1), 1–40.
- Fournier R.O. (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5 (1–4), 41–50.
- Fournier R.O., Potter R.W. (1982) A revised and expanded silica (quartz) geothermometer. Geotherm. Resour. Council. Bull. 11, 3–12.
- Fournier R.O., Truesdell A.H. (1970) Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A. Geothermics 2 (PART 1), 529–535.
- Ganor J., Huston T., Walter L. (2005) Quartz precipitation kinetics at 180 °C in NaCl solutions–Implications for the usability of the principle of detailed balancing. Geochim. Cosmochim. Acta 69 (8), 2043–2056.
- Gíslason S.R., Heaney P.J., Veblen D.R., Livi K.J.T. (1993) The difference between the solubility of quartz and chalcedony: the cause? Chem. Geol. 107 (3–4), 363–366.
- Gunnarsson I., Arnόrsson S. (2000) Amorphous silica solubility and the thermodynamic properties of H4 in the range of 0 ° to 350 ° at Psat. Geochim. Cosmochim. Acta 64, 2295–2307.
- Herdianita N.R., Browne P.R.L., Rodgers K.A., Campbell K.A. (2000) Mineralogical and textural changes accompanying ageing of silica sinter. Mineral. Deposita 35, 48–62.
- Icenhower J.P., Dove P.M. (2000). The dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength. Geochim. Cosmochim. Acta 64 (24), 4193–4203.
- Juhri S., Yonezu K., Harijoko A., Nurpratama M., Yokoyama T. (2023). Diverse scale deposition in response to the change in chemical properties of geothermal water at the Dieng geothermal power plant, Indonesia. Geothermics 111, 102717.
- Kai B., Xiaojun N., Weimin W., Xiaojun W., Yu P., Panchal B. (2020) Application of geothermal thermometric scale in the study of deep reservoir temperature. Energy Explor. Exploit. 38 (6), 2618–2630.
- Lasaga A.C. (1981) Rate laws of chemical reactions. Rev. Miner. 8, 1–68.
- Lynne B.Y., Campbell K.A., Moore J.N., Browne P.R.L. (2005) Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, USA. Sediment. Geol. 179, 249–278.
- Mroczek E.K., White S.P., Graham D.J. (2000) Deposition of amorphous silica in porous packed beds predicting the lifetime of reinjection aquifers. Geothermics 29 (6), 737–757.
- Okamoto A., Tsuchiya N. (2009) Velocity of vertical fluid ascent within vein-forming fractures. Geology 37 (6), 563–566.
- Okamoto A., Saishu H., Hirano N., Tsuchiya N. (2010) Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: Implications for quartz vein formation. Geochim. Cosmochim. Acta 74 (13), 3692–3706.
- Oliver N., Rubenach M., Fu B., Baker T., Blenkinsop T., Cleverley J., Marshall L., Ridd P. (2006) Granite-related overpressure and volatile release in the mid crust: Fluidized breccias from the Cloncurry District, Australia. Geofluids 6, 346–358.
- Plyasunov A.V. (2012) Thermodynamics of Si(OH)4 in the vapor phase of water: Henry’s and vapor–liquid distribution constants, fugacity and cross virial coefficients. Geochim. Cosmochim. Acta 77, 215–231.
- Rezaei A., Rezaeian M., Porkhial S. (2019) The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. Geothermics 78, 9–27.
- Rimstidt J.D., Barnes H.L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44 (11), 1683–1699.
- Tester J.W., Worley W.G., Robinson B.A., Grigsby C.O., Feerer J.L. (1994) Correlating quartz dissolution kinetics in pure water from 25 to 625 °C. Geochim. Cosmochim. Acta 58 (11), 2407–2420.
- Tobler D.J., Benning L.G. (2013) In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions. Geochim. Cosmochim. Acta 114, 156–168.
- van den Heuvel D.B., Gunnlaugsson E., Gunnarsson I., Stawski T., Peacock C.L., Benning L.G. (2018) Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines. Geothermics 76, 231–241.
- Verma M.P. (2000) Chemical thermodynamics of silica: A critique on its geothermometer. Geothermics 29 (3), 323–346.
- Williams L.A., Crerar D.A. (1985) Silica diagenesis, II. General mechanisms. J. Sedimentary Petrology 55 (3), 312–321.
Дополнительные файлы
