Thermodynamic properties of oxide compounds occurring in Ca–Al-rich inclusions
- Авторлар: Shornikov S.I.1
-
Мекемелер:
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Шығарылым: Том 70, № 9 (2025): VOL 70, NO9 (2025)
- Беттер: 727-756
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0016-7525/article/view/351288
- DOI: https://doi.org/10.7868/S3034495625090048
- ID: 351288
Дәйексөз келтіру
Аннотация
Авторлар туралы
S. Shornikov
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: sergey.shornikov@gmail.com
Kosygina Str., 19, Moscow, 119991 Russia
Әдебиет тізімі
- Бережной А.С. (1970) Многокомпонентные системы окислов. Киев: Наукова думка, 544 с.
- Глушко В.П., Гурвич Л.В., Бергман Г.А., Вейц И.В., Медведев В.А., Хачкурузов Г.А., Юнгман В.С. (1978–1982) Термодинамические свойства индивидуальных веществ. Справочник (под ред. В. П. Глушко). М.: Наука.
- Голубенко А.Н., Резухина Т.Н. (1964) Термодинамические свойства титаната кальция из электрохимических измерений при повышенных температурах. Журнал физической химии. 38 (12), 2920–2923.
- Жеребцов Д.А., Арчугов С.А., Михайлов Г.Г. (1999) Исследование плавкости системы CaO–Al2O3. Расплавы. (2), 63–65.
- Зайцев А.И., Королев Н.В., Могутнов Б.М. (1990) Термодинамические свойства промежуточных фаз системы CaF2–Al2O3–CaO. II. Расчет термодинамических функций. Журнал физической химии. 64 (6), 1505–1515.
- Зайцев А.И., Литвина А.Д., Могутнов Б.М. (1995) Термодинамические свойства анортита CaAl2Si2O8 и геленита Ca2Al2SiO7. Неорганические материалы. 31 (6), 762–767.
- Казенас Е.К. (2004) Термодинамика испарения двойных оксидов. М.: Наука, 551 c.
- Киселева И.А., Огородова Л.П., Топор Н.Д., Чигарева О.Г. (1979) Термохимическое исследование системы CaO–MgO–SiO2. Геохимия. (12), 1811–1825.
- Киселева И.А., Огородова Л.П., Топор Н.Д., Чигарева О.Г. (1981) Термохимия силикатов системы CaO–MgO–SiO2. Труды Десятого Всесоюзного совещания по экспериментальной и технической минералогии и петрографии. Киев: Наукова думка, 44–51.
- Ланда Я.А., Наумова И.А. (1979) Определение энтальпии и теплоемкости магнезиальных шпинелей в интервале 1400–2200 K. Огнеупоры. (6), 9–12.
- Маркова О.М., Яковлев О.И., Семенов Г.А., Белов А.Н. (1986) Некоторые общие результаты экспериментов по испарению природных расплавов в камере Кнудсена. Геохимия. 23 (11), 1559–1569.
- Назаров М.А., Корина М.И., Ульянов А.А., Колесов Г.М., Щербовский Е.Я. (1984) Минералогия, петрография и химический состав богатых кальцием и алюминием включений метеорита Ефремовка. Метеоритика. (43), 49–65.
- Попов С.Г., Левицкий В.А., Сколис Ю.Я., Карлин В.В. (1979) Исследование термодинамической устойчивости гексаалюмината кальция CaO·6Al2O3 и его взаимодействие с окислами Ti, Cr и Zr. Известия АН СССР. Неорганические материалы. 15 (7), 1237–1241.
- Пригожин И., Дефэй Р. (1966) Химическая термодинамика. Новосибирск: Наука, 512 с.
- Резухина Т.Н., Левицкий В.А., Френкель М.Я. (1966) Термодинамические свойства вольфраматов бария и кальция. Известия АН СССР. Неорганические материалы. 2 (2), 325–331.
- Рутман Д.С., Щетникова И.Л., Келарева Е.И., Семенов Г.А. (1968) Испарение алюминатной и хромистой шпинелей. Огнеупоры. (10), 40–45.
- Сидоров Л.Н., Коробов М.В., Журавлева Л.В. (1985) Масс-спектральные термодинамические исследования. М.: МГУ, 208 с.
- Сколис Ю.А., Левитский В.А., Янишевский В.М. (1983) Применение метода ЭДС с твердым фторпроводящим электролитом для определения термодинамических свойств 3CaO·Al2O3·CaF2 и CaAl2O4. Журнал физической химии. 57 (11), 2687–2690.
- Смирнова Н.А. (1987) Молекулярные теории растворов. Л.: Химия, 336 с.
- Столярова В.Л., Шорников С.И. (1991) Масс-спектрометрическое исследование относительной летучести и термодинамические свойства системы CaO–Al2O3–SiO2. Аморфные и кристаллические материалы: синтез, структура, свойства, применение. М.: МХТИ им. Д. И. Менделеева, 63–69.
- Товмаченко В.Н., Огняник С.С., Коробов М.В., Сидоров Л.Н. (1979) Исследование состава и давления паров флюсов системы CaF2–Al2O3–CaO. Автоматическая сварка. (10), 71–73.
- Торопов Н.А., Барзаковский В.П., Лапин В.В., Курцева Н.Н. (1969) Диаграммы состояния силикатных систем. Справочник. Выпуск первый. Двойные системы. Л.: Наука, 822 с.
- Торопов Н.А., Барзаковский В.П., Лапин В.В., Курцева Н.Н., Бойкова А.И. (1972) Диаграммы состояния силикатных систем. Справочник. Выпуск третий. Тройные силикатные системы. Л.: Наука, 448 с.
- Чудненко К.В. (2010). Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. Новосибирск: Гео, 287 с.
- Шапкин А.И., Сидоров Ю.И. (2004) Термодинамические модели в космохимии и планетологии. М.: Едиторал УРСС, 336 с.
- Шорников С.И., Столярова В.Л., Шульц М.М. (1996) Масс-спектрометрическое исследование термодинамических свойств расплавов системы CaO–Al2O3–SiO2. Техника и технология силикатов. 3 (1–2), 8–22.
- Шорников С.И. (2011) Термодинамические свойства расплавов системы CaO–MgO–Al2O3. Вестник ОНЗ РАН. 3, doi: 10.2205/2011NZ000230.
- Шорников С.И., Яковлев О.И. (2014) Термодинамика испарения CAI: экспериментальные данные и расчеты. XV междунар. конф. Физико-химические и петрофизические исследования в науках о Земле. М.: ИГЕМ РАН, 246–249.
- Шорников С.И. (2015) Термодинамические свойства расплавов в системе CaO–TiO2. Труды ВЕСЭМПГ, М.: ГЕОХИ РАН, 191–194.
- Шорников С.И., Шорникова М.С. (2018) Термодинамические свойства расплавов в системе Al2O3–TiO2. XIX междунар. конф. Физико-химические и петрофизические исследования в науках о Земле. М.: ИГЕМ РАН, 349–352.
- Шорников С.И., Иванова М.А., Минаева М.С. (2019) Термодинамические свойства расплавов в системе CaO–Al2O3–TiO2. XX междунар. конф. Физико-химические и петрофизические исследования в науках о Земле. М.: ИГЕМ РАН, 364–368.
- Шорников С.И. (2019) Термодинамическое моделирование процессов испарения лунного и метеоритного вещества. Геохимия. 57 (8), 794–802.
- Shornikov S.I. (2019) Thermodynamic modelling of evaporation processes of lunar and meteoritic substance. Geochem. Int. 57 (8), 865–872.
- Шорников С.И. (2019a) Термодинамические свойства расплавов в системе MgO–TiO2. Труды ВЕСЭМПГ. М.: ГЕОХИ РАН, 243–246.
- Шорников С.И. (2020) Термодинамические свойства расплавов в системе TiO2–SiO2. XXI междунар. конф. Физико-химические и петрофизические исследования в науках о Земле. М.: ИГЕМ РАН, 281–284.
- Шорников С.И., Яковлев О.И. (2022) Масс-спектрометрическое исследование испарения расплавов CAIs (типы A и B) метеорита Ефремовка. XXIII междунар. конф. Физико-химические и петрофизические исследования в науках о Земле. М.: ИГЕМ РАН, 320–323.
- Шульц М.М., Шорников С.И. (1995) Масс–спектрометрическое исследование термодинамических свойств расплавов алюминатов кальция. ДАН. 340 (3), 350–352.
- Allibert M., Chatillon C., Lourtau R. (1979) Mise au point d’une technique de mesure d`active par spectrometrie de masse, dans les melanges d’oxides liquides: application au systeme CaO–MgO–Al2O3 a 1960 K. Rev. Int. Haut. Temp. Refr. 16 (1), 33–37.
- Allibert M., Chatillon C., Jacob K.J., Lourtau R. (1981) Mass-spectrometric and electrochemical studies of thermodynamic properties of liquid and solid phases in the system CaO–Al2O3. J. Amer. Ceram. Soc. 64 (5), 307–314.
- Alper A.M., McNally R.N., Ribbe P.H., Doman R.C. (1962) The system MgO–MgAl2O4. J. Amer. Ceram. Soc. 45 (6), 263–268.
- Altman R.L. (1963) Vaporization of magnesium oxide and its reactions with alumina. J. Phys. Chem. 67 (2), 366–369.
- Altman R.L. (1964) Heat of formation of MgAl2O4. J. Phys. Chem. 68 (11), 3425–3426.
- Ashida T., Kume S., Ito E. (1987) Thermodynamic aspects of phase boundary among α-, β-, and γ-Mg2SiO4. High-pressure research in geophysics. 39, 269–274.
- Ayed F., Sorrentino F., Castanet R. (1994) Determination par calorimetrie de dissolution des enthalpies de formation de quelques silicates, aluminates et alumino-silicates de calcium. J. Therm. Anal. 41 (4), 755–766.
- Bale C.W., Belisle E., Chartrand P., Decterov S.A., Eri- ksson G., Gheribi A.E., Hack K., Jung I.-H., Kang Y.-B., Melancon C., Pelton A.D., Petersen S., Robelin C., Sangster J., Spencer P., Van Ende M-A. (2016) FactSage thermochemical software and databases, 2010–2016. CALPHAD. 54, 35–53.
- Banon S., Chatillon C., Allibert M. (1981) Free energy of mixing in CaTiO3–Ti2O3–TiO2 melts by mass spectrometry. Can. Met. Q. 20 (1), 79–84.
- Barin I. (1995) Thermochemical data of pure substances. Weinheim: VCH, 2003 p.
- Bonnickson K.R. (1955) High temperature heat contents of aluminates of calcium and magnesium. J. Phys. Chem. 59 (3), 220–221.
- Bouhifd M.A., Gruener G., Mysen B.O., Richet P. (2002). Premelting and calcium mobility in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3). Phys. Chem. Miner. 29, 655–662.
- Brearley A.J., Jones R.H. (1998) Chondritic meteorites. Rev. Miner. 36, 1–191.
- Brousse C., Newton R.C., Kleppa O.J. (1984) Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry. Geochim. Cosmochim. Acta. 48 (5), 1081–1088.
- Buykx W.J. (1982) Specific heat, thermal diffusivity and thermal conductivity of synroc, perovskite, zirconolite and barium hollandite. J. Nucl. Mater. 107 (1), 78–82.
- Cameron J., Gibbons T.B., Taylor J. (1966) Calcium sulphide solubilities and lime activities in the lime-alumina-silica system. J. Iron Steel Inst. 204 (12), 1223–1228.
- Carter P.J., Macfarline T.G. (1957) The thermodynamic properties of CaO–Al2O3 and CaO–SiO2. J. Iron Steel Inst. 185 (1), 54–66.
- Chamberlin L., Beckett J.R., Stolper E. (1994) Pd-oxide equilibration: a new experimental method for the direct determination of oxide activities in melts and minerals. Contrib. Miner. Petrol. 116 (1–2), 169–181.
- Chamberlin L., Beckett J.R., Stolper E. (1995) Palladium oxide equilibration and the thermodynamic properties of MgAl2O4 spinel. Amer. Miner. 80 (3–4), 285–296.
- Charlu T.V., Newton R.C., Kleppa O.J. (1975) Enthalpies of formation at 970 K of compounds in the system MgO–Al2O3–SiO2 from high temperature solution calorimetry. Geochim. Cosmochim. Acta. 39 (11), 1487–1497.
- Charlu T.V., Newton R.C., Kleppa O.J. (1978) Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochim. Cosmochim. Acta. 42 (4), 367–375.
- Charlu T.V., Newton R.C., Kleppa O.J. (1981) Thermochemistry of synthetic Ca2Al2SiO7 (gehlenite) – Ca2MgSi2O7 (akermanite) melilites. Geochim. Cosmochim. Acta. 45 (9), 1609–1617.
- Chase M.W. (1998) NIST-JANAF themochemical tables. J. Phys. Chem. Ref. Data (9), 1–1951.
- Chatillon-Colinet C., Newton R.C., Perkins D., Kleppa O.J. (1983) Thermochemistry of (Fe2+, Mg)SiO3 orthopyroxene. Geochim. Cosmochim. Acta. 47 (9), 1597–1603.
- Chipman J. (1961) Thermodynamic properties of blast furnace slags. Met. Soc. AIME Conf. 7 (1), 27–64.
- Cho S.-W., Suito H. (1994) Assessment of aluminum-oxigen equilibrium in liquid iron and activities in CaO–Al2O3–SiO2 slags. Iron Steel Inst. Japan Int. 34 (2), 177–185.
- Cho S.-W., Suito H. (1994a) Magnesium deoxidation and nitrogen distribution in liquid nickel equilibrated with CaO–Al2O3–MgO slags. Iron Steel Inst. Japan Int. 34 (9), 746–754.
- Courtial P., Richet P. (1993) Heat capacity of magnesium aluminosilicate melts. Geochim. Cosmochim. Acta. 57 (6), 1267–1275.
- DeYoreo J.J., Lange R.A., Navrotsky A. (1995) Scanning calorimetric determinations of the heat contents of diopside-rich systems during melting and crystallization. Geochim. Cosmochim. Acta. 59 (13), 2701–2707.
- DeWys E.C. (1960) A thermodynamic analysis of the system anorthite-akermanite. Miner. Magaz. 32 (251), 644–649.
- Edmunds D.M., Taylor J. (1972) Reaction CaO + 2C = = CaC + CO and activity of lime in CaF2–CaO–Al2O3 system. J. Iron Steel Inst. 210 (4), 280–283.
- Feng D., Shivaramaiah R., Navrotsky A. (2016) Rare-earth perovskites along the CaTiO3–Na0.5La0.5TiO3 join: phase transitions, formation enthalpies, and implications for loparite minerals. Am. Miner. 101 (9), 2051–2056.
- Ferrier A. (1971) Experimental study of the enthalpy of crystallization of synthetic diopside and anorthite. Rev. Int. Haut. Temp. Refr. 8 (1), 31–36.
- Fincham C.J.B., Richardson F.D. (1954) The behaviour of sulphur in silicate and aluminate melts. Proc. Roy. Soc. A. 223 (1152), 40–62.
- Fujii K., Nagasaka T., Hino M. (2000) Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO · Al2O3. Iron Steel Inst. Japan Int. 40 (11), 1059–1066.
- Fujisawa T., Yamauchi C., Sakao H. (1990) Equilibrium between molten iron alloys and CaO–Al2O3–CaS slags saturated with CaS. Japan J. Iron Steel Inst. 76 (3), 368–375.
- Ganguly J. (2020) Thermodynamics in earth and planetary sciences. Cham: Springer, 610 p.
- Geiger C.A., Kleppa O.J., Mysen B.O., Latimer J.M., Grossman L. (1988) Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature alkali borate solution calorimetry. Geochim. Cosmochim. Acta. 52 (6), 1729–1736.
- Gillet P., Richet P., Guyot F., Fiquet G. (1991). High-temperature thermodynamic properties of forsterite. J. Geophys. Res.: Solid Earth. 96 (B7), 11805–11816.
- Gong W., Wu L., Navrotsky A. (2018) Combined experimental and computational investigation of thermodynamics and phase equilibria in the CaO–TiO2 system. J. Amer. Ceram. Soc. 101 (3), 1361–1370.
- Gribchenkova N.A., Smorchkov K.G., Kolmakov A.G., Alikhanyan A.S. (2017) Vaporization in the Al2O3–MgO system. Russ. Inorg. Mater. 53 (5), 514–518.
- Grjotheim K., Herstad O., Toguri J.M. (1961) The aluminum reduction of magnesium oxide, I. The vapor pressure of magnesium over the system Al–MgO. Can. J. Chem. 39 (3), 443–450.
- Grjotheim K., Herstad O., Toguri J.M. (1962) The aluminum reduction of magnesium compounds. Can. Min. Metall. Trans. 65 (2), 221–224.
- Grjotheim K., Herstad O., Johansen K. (1963) Alumino-thermic reduction of magnesium compounds. Bull. Inst. Politeh. Bucuresti. 25 (6), 41–56.
- Grjotheim K., Herstad O., Johannessen K.S. (1964) Der dampfdruck von magnesium uber dem system Al4C3–MgO. Z. Anorg. Allg. Chem. 328 (5–6), 267–271.
- Gronow H.E., Schwiete H.E. (1933) Die spezifischen warmen von CaO, Al2O3, CaO · Al2O3, 3CaO · Al2O3, 2CaO · SiO2, 3CaO · SiO2, 2CaO · Al2O3 · SiO2 von 20 bis 1500 °C. Z. anorg. allg. Chem. 216 (2), 185–195.
- Guyot F., Richet P., Courtial P., Gillet P. (1993) High-temperature heat capacity and phase transitions of CaTiO3 perovskite. Phys. Chem. Miner. 20 (3), 141–146.
- Hallstedt B. (1992) Thermodynamic assessment of the system MgO–Al2O3. J. Amer. Ceram. Soc. 75 (6), 1497–1507.
- Helean K.B., Navrotsky A., Vance E.R., Carter M.L., Ebbinghaus B., Krikorian O., Lian J., Wang L.M., Cata- lano J.G. (2002) Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46UUTi1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: three materials relevant to the proposed waste form for excess weapons plutonium. J. Nucl. Mater. 303 (2–3), 226–239.
- Hemingway B.S., Robie R.A. (1984) Heat capacity and thermodynamic functions for gehlenite and staurolite: with comments on Schottky anomaly in the heat capacity of staurolite. Am. Mineral. 69 (3–4), 307–318.
- Hemingway B.S., Evans H.T., Nord G.L., Haselton H.T., Robie R.A., McGee J.J. (1986). Akermanite: phase transitions in heat capacity and thermal expansion, and revised thermodynamic data. Can. Mineral. 24 (3), 425–434.
- Henderson D., Taylor J. (1966) Thermodynamic properties in the CaO–MgO–SiO2 and MgO–Al2O3–SiO2 systems. J. Iron Steel Inst. 204 (1), 39–43.
- Hofmeister A.M. (2004) Physical properties of calcium aluminates from vibrational spectroscopy. Geochim. Cosmochim. Acta. 68 (22), 4721–4726.
- Ivanova M.A., Mendybaev R.A., Shornikov S.I., Lo- renz C.A., MacPherson G.J. (2021) Modeling the evaporation of CAI-like melts, and constraining the origin of CH–CB CAIs. Geochim. Cosmochim. Acta. 296, 97–116.
- Jacob K.T., Alcock C.B. (1977) Activities and their relation to cation distribution in NiAl2O4–MgAl2O4 spinel solid solutions. J. Solid State Chem. 20 (1), 79–88.
- Jacob K.T., Jayadevan K.P., Waseda Y. (1998) Electrochemical determination of the Gibbs energy of formation of MgAl2O4. J. Amer. Ceram. Soc. 81 (1), 209–212.
- Jacob K.T., Abraham K.P. (2009) Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7. J. Chem. Thermodyn. 41 (6), 816–820.
- Kalyanram M.R., Bell H.B. (1961) Activities in the system CaO–MgO–Al2O3. Trans. Brit. Ceram. Soc. 60 (2), 135–145.
- Kambayashi S., Kato E. (1983) A thermodynamic study of (magnesium oxide + silicon dioxide) by mass spectrometry. J. Chem. Thermodyn. 15 (6), 701–707.
- Kambayashi S., Kato E. (1984) A thermodynamic study of (magnesium oxide – silicon dioxide) by mass spectrometry at 1973 K. J. Chem. Thermodyn. 16 (2), 241–248.
- Kay D.A.R., Taylor J. (1960) Activities of silica in the lime-alumina-silica system. Trans. Faraday Soc. 56. (453/9), 1372–1386.
- Khitarov N.I., Kadik A.A. (1973) Water and carbon dioxide in magmatic melts and peculiarities of melting process. Contr. Miner. Petrol. 41 (3), 205–215.
- Kleppa O.J. (1967) Application of high temperature solution calorimetry to oxide systems. Proc. Brit. Ceram. Soc. (8), 31–38.
- Klimm D., Schmidt M., Wolff N., Guguschev C., Ganschow S. (2018) On melt solutions for the growth of CaTiO3 crystals. J. Cryst. Growth. 486, 117–121.
- Koito S., Akaogi M., Kubota O., Suzuki T. (2000) Calorimetric measurements of perovskites in the system CaTiO3–CaSiO3 and experimental and calculated phase equilibria for high-pressure dissociation of diopside. Phys. Earth Planet. Inter. 120 (1–2), 1–10.
- Kojitani H., Nishimura K., Kubo A., Aoki K., Akaogi M. (2003) Raman spectroscopy and heat capacity measurement of calcium ferrite type MgAl2O4 and CaAl2O4. Phys. Chem. Miner. 30 (7), 409–415.
- Kojitani H., Oohata M., Inoue T., Akaogi M. (2012) Redetermination of high-temperature heat capacity of Mg2SiO4 ringwoodite: Measurement and lattice vibrational model calculation. Am. Mineral. 97 (8–9), 1314–1319.
- Kosa L., Tarina I., Adamkovicova K., Proks I. (1992) Enthalpic analysis of melts in the CaO·SiO2 (CS) – CaO·Al2O3·2SiO2 (CAS2) – 2CaO·Al2O3·SiO2 (C2AS) system. Geochim. Cosmochim. Acta. 56 (7), 2643–2655.
- Kracek F.C., Neuvonen K.J., Burley G. (1951) Thermochemistry of mineral substances, I: a thermodynamic study of stability of jadeite. J. Wash. Acad. Sci. 41 (12), 373–383.
- Krot A.N., Petaev M.I., Nagashima K. (2021) Infiltration metasomatism of the Allende coarse-grained calcium-aluminum-rich inclusions. Prog. Earth Planet. Sci. 8, 1–37.
- Krupka K.M., Robie R.A., Hemingway B.S. (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass. Am. Mineral. 64 (1–2), 86–101.
- Krupka K.M., Robie R.A., Hemingway B.S., Kerrick D.M., Ito J. (1985) High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. Am. Mineral. 70 (3–4), 261–271.
- Kumar R.V., Kay D.A.R. (1985) The utilization of galvanic cells using Caβ-alumina solid electrolytes in a thermodynamic investigation of the CaO–Al2O3 system. Met. Trans. B. 16 (1), 107–112.
- Lange R.A., De Yoreo J.J., Navrotsky A. (1991). Scanning calorimetric measurement of heat capacity during incongruent melting of diopside. Am. Mineral. 76 (5–6), 904–912.
- Lewis G.N., Randall M. (1923) Thermodynamics and the free energy of chemical substances. N. Y.: McGraw-Hill, 653 p.
- Linton J., Navrotsky A., Fei Y. (1998) The thermodynamics of ordered perovskites on the CaTiO3–FeTiO3 join. Phys. Chem. Miner. 25 (8), 591–596.
- Ma C., Simon S.B., Rossman G.R., Grossman L. (2009) Calcium Tschermak’s pyroxene, CaAlAlSiO6, from the Allende and Murray meteorites: EBSD and micro-Raman characterizations. Am. Mineral. 94 (10), 1483–1486.
- Ma C., Krot A.N. (2014) Hutcheonite, Ca3Ti2(SiAl2O12), a new garnet mineral from the Allende meteorite: an alteration phase in a Ca–Al–rich inclusion. Amer. Miner. 99 (4), 667–670.
- MacPherson G.J. (2014) Calcium-aluminum-rich inclusions in chondritic meteorites. Treatise on Geochemistry. 1, 139–179.
- Mendybaev R.A., Richter F.M., Davis A.M. (2006) Crystallization of melilite from CMAS-liquids and the formation of the melilite mantle of type B1 CAIs: experimental simulations. Geochim. Cosmochim. Acta. 70 (10), 2622–2642.
- Mendybaev R.A., Richter F.M., Georg R.B., Janney P.E., Spicuzza M.J., Davis A.M., Valley J.W. (2013) Experimental evaporation of Mg-and Si-rich melts: implications for the origin and evolution of FUN CAIs. Geochim. Cosmochim. Acta. 123, 368–384.
- Mendybaev R.A., Williams C.D., Spicuzza M.J., Rich- ter F.M., Valley J.W., Fedkin A.V., Wadhwa M. (2017) Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II–Laboratory evaporation of potential CMS-1 precursor material. Geochim. Cosmochim. Acta. 201, 49–64.
- Mendybaev R.A., Kamibayashi M., Teng F.Z., Savage P.S., Georg R.B., Richter F.M., Tachibana S. (2021) Experiments quantifying elemental and isotopic fractionations during evaporation of CAI-like melts in low-pressure hydrogen and in vacuum: Constraints on thermal processing of CAIs in the protoplanetary disk. Geochim. Cosmochim. Acta. 292, 557–576.
- Morita K., Kume K., Sano N. (2002) Activity measurement of silicate slags equilibrated with molten silicon alloys. Scand. J. Met. 31 (1), 178–183.
- Nagata K., Tanabe J., Goto K.S. (1989) Standard free energies of formation of CaO–Al2O3 intermediate compounds by means of EMF measurement of galvanic cells. Tetsu-to-Hagane. 75 (11), 2023–2030.
- Navi N.U., Shneck R.Z., Shvareva T.Y., Kimmel G., Zabicky J., Mintz M.H., Navrotsky A. (2012) Thermochemistry of (CaxSr1–x)TiO3, (BaxSr1–x)TiO3, and (BaxCa1–x)TiO3 perovskite solid solutions. J. Amer. Ceram. Soc. 95 (5), 1717–1726.
- Navrotsky A., Kleppa O.J. (1966) High temperature calorimetry in liquid oxide system. III. The enthalpy of formation of magnesium aluminum spinel. Inorg. Chem. 5 (2), 192–193.
- Navrotsky A., Kleppa O.J. (1967) Thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29 (11), 2701–2714.
- Navrotsky A., Kleppa O.J. (1968) Thermodynamics of formation of simple spinels. J. Inorg. Nucl. Chem. 30 (2), 479–498.
- Navrotsky A. (1971) Thermodynamics of formation of the silicates and germanates of some divalent transition metals and of magnesium. J. Inorg. Nucl. Chem. 33 (12), 4035–4050.
- Navrotsky A., Coons W.E. (1976) Thermochemistry of some pyroxenes and related compounds. Geochim. Cosmochim. Acta. 40 (10), 1281–1288.
- Navrotsky A., Hon R., Weill D.F., Henry D.J. (1980) Thermochemistry of glasses and liquids in the systems CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8, SiO2–CaAlSi2O8–NaAlSi3O8 and SiO2–Al2O3–CaO–Na2O. Geochim. Cosmochim. Acta. 44 (10), 1409–1423.
- Navrotsky A., Wechsler B.A., Geisinger K.L., Seifert F. (1986) Thermochemistry of MgAl2O4–Al8/3O4 defect spinels. J. Am. Ceram. Soc. 69 (5), 418–422.
- Navrotsky A., Ziegler D., Oestrike R., Maniar P. (1989) Calorimetry of silicate melts at 1773 K: measurement of enthalpies of fusion and of mixing in the systems diopside-anorthite-allite and anorthite-forsterite. Contrib. Mineral. Petrol. 101 (1), 122–130.
- Naylor B.F., Cook O.A. (1946) High-temperature contents of the metatitanates of calcium, iron and magnesium. J. Amer. Chem. Soc. 68 (6), 1003–1005.
- Newton R.C., Charlu T.V., Kleppa O.J. (1977) Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO–MgO–Al2O3–SiO2. Geochim. Cosmochim. Acta. 41 (3), 369–377.
- Newton R.C., Charlu T.V., Kleppa O.J. (1980) Thermochemistry of the high structural state plagioclases. Geochim. Cosmochim. Acta. 44 (7), 933–941.
- Nurse R.W., Welch J.H., Majumdar A.J. (1965) The CaO–Al2O3 system in a moisture-free atmosphere. Trans. Brit. Ceram. Soc. 64 (9), 409–418.
- O’Neill H.S.C., Pownceby M.I., McCammon C.A. (2003) The magnesiowüstite: iron equilibrium and its implications for the activity-composition relations of (Mg, Fe)2SiO4 olivine solid solutions. Contrib. Miner. Petrol. 146, 308–325.
- Orr R.L. (1953) High temperature heat contents of magnesium orthosilicate and ferrous orthosilicate. J. Am. Chem. Soc. 75 (3), 528–529.
- Pankratz L.B., Kelley K.K. (1964) High-temperature heat contents and entropies of akermanite, corderite, gehlenite, and merwinite. U. S. Bur. Min. Rept. (6555), 7 p.
- Prasanna T.R.S., Navrotsky A. (1994) Energetics in the brownmillerite-perovskite pseudobinary Ca2Fe2O5–CaTiO3. J. Mater. Res. 9 (12), 3121–3124.
- Proks I., Eliasova M., Kosa L. (1977) The heat of fusion of akermanite. Silikaty. 21 (1), 3–11.
- Putnam R.L., Navrotsky A., Woodfield B.F., Boerio-Goates J., Shapiro J.L. (1999) Thermodynamics of formation for zirconolite (CaZrTi2O7) from T = 298.15 K to T = 1500 K. J. Chem. Thermodyn. 31 (2), 229–243.
- Rein R.H., Chipman J. (1965) Activities in the liquid solution SiO2–CaO–MgO–Al2O3 at 1600 °C. Trans. Met. Soc. AIME. 233 (2), 415–425.
- Richet P., Bottinga Y. (1984) Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth. Planet. Sci. Lett. 67 (3), 415–432.
- Richet P., Bottinga Y. (1986) Thermochemical properties of silicate glasses and liquids. Rev. Geophys. 24 (1), 1–25.
- Richet P., Fiquet G. (1991) High temperature heat capacity and premelting of minerals in the system MgO–CaO–Al2O3–SiO2. J. Geophys. Res. B 96 (1), 445–456.
- Richet P., Leclerc F., Benoist L. (1993) Melting of forsterite and spinel, with implications for the glass transition of Mg2SiO4 liquid. Geophys. Res. Lett. 20 (16), 1675–1678.
- Richet P., Ingrin J., Mysen B.O., Courtial P., Gillet P. (1994) Premelting effects in minerals: an experimental study. Earth Planet. Sci. Lett. 121 (3–4), 589–600.
- Richter F.M., Janney P.E., Mendybaev R.A., Davis A. M., Wadhwa M. (2007) Elemental and isotopic fractionation of type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta. 71 (22), 5544–5564.
- Robie R.A., Hemingway B.S., Wilson W.H. (1978) Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Amer. Mineral. 63 (1–2), 109–123.
- Robie R.A., Hemingway B.S., Takei H. (1982). Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Amer. Miner. 67 (5–6), 470–482.
- Robie R.A., Hemingway B.S. (1995) Thermodynamic properties of mineral and related substances at 298.15 K and 1 bar (105 Pascals) pressure and high temperatures. U. S. Geol. Surv. Bull. (2131), 1–461.
- Rog G., Langanke B., Borchardt G., Schmalzried H. (1974) Determination of the standard Gibbs free energies of formation of the silicates of cobalt, magnesium and strontium by e. m. f. measurements. J. Chem. Thermodyn. 6 (12), 1113–1119.
- Rog G., Kozlowska–Rog A., Zakula–Sokol K. (1993) Determination of the standard Gibbs free energies of formation of the calcium aluminates from the oxides by e. m. f. measurements. J. Chem. Thermodyn. 25 (7), 807–810.
- Rosen E., Muan A. (1966) Stability of MgAl2O4 at 1400 °C as derived from equilibrium measurements in CoAl2O4–MgAl2O4 solid solutions. J. Amer. Ceram. Soc. 49 (2), 107–108.
- Sahu S.K., Maram P.S., Navrotsky A. (2013) Thermodynamics of nanoscale calcium and strontium titanate perovskites. J. Amer. Ceram. Soc. 96 (11), 3670–3676.
- Sasamoto T., Hara H., Sata T. (1981) Mass spectrometric study of the vaporization of magnesium oxide from magnesium aluminate spinel. Bull. Chem. Soc. Japan. 54 (11), 3327–3333.
- Sata T., Yokoyama T. (1973) Vaporization rate of MgO from spinel crystal in vacuum. J. Ceram. Soc. Japan. 81 (4), 170–177.
- Sato T., Yamazaki S., Yamashita T., Matsui T., Nagasaki T. (2001) Enthalpy and heat capacity of (Ca1–xPux)TiO3 (x = 0 and 0.20). J. Nucl. Mater. 294, 135–140.
- Schmalzried H. (1960) Zur messung der freien reaktionsenthalpie bei der bildung von spinellphasen aus den einzeloxyden mit hilfe galvanischer festkorperketten. Z. Phys. Chem. 25 (3–4), 178–192.
- Scholze H., Kumm K.A. (1969) Rate of crystal growth of molten slags in the system calcium oxide-alumina-silica. Tonind.-Ztg. Kerm. Rundsch. 93 (10), 360–363.
- Sharma R.A., Richardson F.D. (1961) Activities in lime-alumina melts. J. Iron Steel Inst. 198 (4), 386–390.
- Shearer J.A., Kleppa O.J. (1973) The enthalpies of formation of MgAl2O4, MgSiO3, Mg2SiO4, and Al2SiO5 by oxide melt solution calorimetry. J. Inorg. Nucl. Chem. 35 (4), 1073–1078.
- Shornikov S.I., Stolyarova V.L., Shultz M.M. (1997) The thermodynamic properties and estimation of the enthalpy of fusion of the components in the CaO–Al2O3 system. Russ. J. Phys. Chem. 71 (1), 23–27.
- Shornikov S.I., Stolyarova V.L., Shultz M.M. (1997a) Vaporization and the thermodynamic properties of diopside. Russ. J. Phys. Chem. 71 (2), 174–178.
- Shornikov S.I., Archakov I.Y., Shultz M.M. (2000) Thermodynamic properties of the melts, containing titanium dioxide. Titanium ‘99. Science and Technology. Saint-Petersburg: CRISM Prometey, 3, 1469–1473.
- Shornikov S.I. (2003) Thermodynamic properties of CaO–Al2O3 melts. Experiment in Geosciences. 11 (1), 57–58.
- Shornikov s.i. (2004) thermodynamic properties of Al2O3–SiO2 melts. Experiment in Geosciences. 12 (1), 15–16.
- Shornikov S.I. (2006) Thermodynamic properties of MgO–SiO2 melts. Experiment in Geosciences. 13 (1), 56–57.
- Shornikov S.I. (2007) Thermodynamic properties of CaO–Al2O3–SiO2 melts. Experiment in Geosciences. 14 (1), 35–37.
- Shornikov s.i. (2008) thermodynamic properties of MgO–Al2O3–SiO2 melts. Experiment in Geosciences. 15 (1), 147–149.
- Shornikov S.I. (2016) Thermodynamic properties of the CaO–MgO–SiO2 melts. Experiment in Geosciences. 22 (1), 40–42.
- Shornikov S.I. (2017) Thermodynamic properties of spinel MgAl2O4: a mass spectrometric study. Russ. J. Phys. Chem. A. 91 (2), 287–294.
- Shornikov S.I. (2019) High temperature mass spectrometric study of thermodynamic properties of CaTiO3 perovskite. Russ. J. Phys. Chem. A. 93 (8), 1428–1434.
- Shornikov S.I. (2020) Thermodynamic properties of the CaO–MgO melts. Experiment in Geosciences. 26 (1), 77–80.
- Shornikov S.I. (2021) Thermodynamics of perovskite: solid, liquid and gas phases. Perovskite & piezoelectric materials. London: IntechOpen, 115–138.
- Shornikov S.I. (2023) Thermodynamic study of fractional evaporation of refractory meteorite matter melts under various redox conditions. Advances in Geochemistry, Analytical Chemistry & Planetary Sciences. Cham: Springer, 361–373.
- Stebbins J.F., Carmichael I.S., Weill D.E. (1983). The high temperature liquid and glass heat contents and the heats of fusion of diopside, albite, sanidine and nepheline. Amer. Miner. 68 (7–8), 717–730.
- Stebbins J.F., Carmichael I.S.E., Moret L.K. (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib. Miner. Petrol. 86, 131–148.
- Stolyarova V.L., Lopatin S.I., Bondar V.V. (2004) Thermodynamic properties of the MgO–SiO2 system by high-temperature mass spectrometry. Dokl. Phys. Chem. 399 (1), 82–84.
- Sugawara T., Akaogi M. (2003) Heats of mixing of silicate liquid in the systems diopside-anorthite-akermanite, diopside-anorthite-forsterite, and diopside-silica. Amer. Miner. 88 (5), 1020–1024.
- Sugawara T. (2005) Thermodynamic properties of magmatic liquid: review and future directions. Kazan. 50 (2), 103–142.
- Takayama-Muromachi E., Navrotsky A. (1988) Energetics of compounds (A2+B4+O3) with the perovskite structure. J. Solid State Chem. 72 (2), 244–256.
- Taylor R.W., Schmalzried H. (1964) The free energy of formation of some titanates, silicates and magnesium aluminate from measurements made with galvanic cells involving solid electrolyte. J. Phys. Chem. 68 (9), 2444–2449.
- Thieblot L., Tequi C., Richet P. (1999) High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5). Amer. Miner. 84 (5–6), 848–855.
- Topor N.D., Suponitskii Yu.L. (1984) The high-temperature microcalorimetry of inorganic substances. Russ. Chem. Rev. 53 (9), 827–850.
- Tretjakow Y.D., Schmalzried H. (1965) Zur thermodynamik von spinellphasen (chromite, ferrite, aluminate). Ber. Bunsenges. Physik. Chem. 69 (5), 396–402.
- Viechnicki D., Schmid F., McCauley J.W. (1974) Liquidus-solidus determinations in the system MgAl2O4–Al2O3. J. Amer. Ceram. Soc. 57 (1), 47–48.
- Wagner H. (1932) Zur thermochemie der metasilikate des calciums und magnesiums und des diopsids. Z. Anorg. Allg. Chem. 208 (1), 1–22.
- Walas S.M. (2013) Phase equilibria in chemical engineering. Butterworth-Heinemann, 671 p.
- Watanabe H. (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the Earth’s mantle. High-pressure research in geophysics. 441–464.
- Weill D.F., Hon R., Navrotsky A. (1980) The igneous system CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8: variations on a classic theme by Bowen. Physics of magmatic processes. Ed. R. B. Hargraves. Princeton: Princeton Univ. Press, 49–92.
- Weill D.F., Stebbins J.F., Hon R., Carmichael I.S.E. (1980a) The enthalpy of fusion of anorthite. Contrib. Mineral. Petrol. 74 (1), 95–102.
- White W.P. (1909) Specific heats of silicates and platinum. Amer. J. Sci. 28 (166), 334–346.
- White W.P. (1919) Silicate specific heats. Amer. J. Sci. 47 (277), 1–44.
- Wood B.J., Kirkpatrick R.J., Montez B. (1986) Order-disorder phenomena in MgAl2O4 spinel. Amer. Miner. 71 (7–8), 999–1006.
- Woodfield B.F., Shapiro J.L., Stevens R., Boerio-Goates J., Putnam R.L., Helean K.B., Navrotsky A. (1999) Molar heat capacity and thermodynamic functions for CaTiO3. J. Chem. Thermodyn. 31 (12), 1573–1583.
- Yakovlev O.I., Markova O.M., Semenov G.A., Belov A.N. (1984) The vaporization peculiarities of CAI inclusions in chondrites: experimental data. XV Lunar Planet. Sci. Conf., 945–946.
- Yakovlev O.I., Shornikov S.I. (2024) Features of evaporation of the outer zones of Ca–Al–inclusions of chondrites. Experiment in Geosciences. 30 (1), 30–32.
- Yong W., Dachs E., Benisek A., Withers A.C., Secco R.A. (2012). Heat capacity, entropy, and phase equilibria of dmitryivanovite. Phys. Chem. Miner. 39, 259–267.
- Zaitsev A.I., Arutyunyan N.A., Shaposhnikov N.G., Zaitseva N.E., Burtsev V.T. (2006) Experimental study and modeling of the thermodynamic properties of magnesium silicates. Russ. J. Phys. Chem. 80 (3), 335–344.
- Zhu H., Newton R. C., Kleppa O.J. (1994) Enthalpy of formation of wollastonite and anorthite by experimental phase equilibrium measurements and high-temperature solution calorimetry. Amer. Miner. 79 (1–2), 134–144.
- Ziegler D., Navrotsky A. (1986) Direct measurement of the enthalpy of fusion of diopside. Geochim. Cosmochim. Acta. 50 (11), 2461–2466.
- Zigo O., Adamcovicova K., Kosa L., Nerad I., Proks I. (1987) Determination of the heat of fusion of 2CaO·Al2O3·SiO2 (gehlenite). Chem. Papers. 41 (2), 171–181.
- Zou Y., Zhou J., Xu Y., Zhao P., Zhang Z. (1982) Some aspects of the thermodynamics of melts. Acta Metall. Sinica. 18 (2), 127–140.
Қосымша файлдар


