Fe-oxide microspherule fragment from Chang’e-5 soil sample: possible evidence for lunar fumarole activity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Earlier discovery of magnetite in the Chang’E-5 regolith raised the question about a source of oxidized material in young basaltic volcanism area of the landing site. Here we report the find of Fe-oxide microspherule fragment found in the Chang’E-5 sample, which retained its original structure suggesting it could be magnetite polyframboid or dendrite-like microspherule. The size and texture of the object suggest its prolonged formation from a Fe-rich oxidized environment. Shape and the growth morphology observed on the microcrystals surface suggest a possible free growth from gaseous or fluid phase. Volcanic gas/fluid accumulated within erupted lava flow could be an oxidizing agent at the late stage of eruption or during post-eruption fumarolic activity. If fumaroles existed in the volcanic complexes of Oceanus Procellarum, then the products should be reworked during regolith gardening afterwards, having preserved traces of such processes in the regolith.

作者简介

S. Demidova

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: demidova.si@yandex.ru
Kosygin Str., 19, Moscow, 119991 Russia

C. Lorenz

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: c-lorenz@yandex.ru
Kosygin Str., 19, Moscow, 119991 Russia

D. Badyukov

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: badyukov@geokhi.ru
Kosygin Str., 19, Moscow, 119991 Russia

参考

  1. Agrell S.O., Scoon J.H., Long J.V.P., Coles J.N. (1972) The occurrence of geothite in a microbreccia from the Fra Mauro formation. Lun. Sci. Conf. 3, 7.
  2. Amonkar A., Iyer S.D., Babu E.V., Shailajha N., Sardar A., Manju S. (2021) Fluid-driven hydrovolcanic activity along fracture zones and near seamounts: evidence from deep-sea Fe-rich spherules, Central Indian Ocean Basin. Acta Geol. Sin. 95, 1591.
  3. Boyce J.W., Liu Y., Rossman G.R., Guan Y., Eiler J.M., Stolper E.M., Taylor L.A. (2010) Lunar apatite with terrestrial volatile abundances. Nat. 466, 466–469.
  4. Buchwald V.F. 1975. Handbook of iron meteorites. Univ. Calif. Press, 1, 87–113.
  5. Cao Z., Guo Z., Li C., Zhao S., Li Y., He Q., Wen Y., Xia Z., Li X., Xia L., Li L., Wang J., Liu J. (2024) Submicroscopic magnetite may be ubiquitous in the lunar regolith of the high-Ti region. Sci. Adv. 10, eadn2301.
  6. Chan Q.H.S., Zolensky M.E., Martinez J.E., Tsuchiy- ama A., Miyake A., 2016. Magnetite plaquettes are naturally asymmetric materials in meteorites. Am. Mineral. 101, 2041–2050.
  7. Che X., Nemchin A.A., Liu D., Long T., Wang C., Norman M.D., Joy K.H., Tartese R., Head J., Jolliff B. (2021) Age and composition of the youngest basalts on the Moon returned by the Chang’e-5. Sci. 374, 887–890.
  8. Chen Y., Zhang Y.X., Liu Y., Guan Y.B., Eiler J., Stolper E.M. (2015) Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 427, 37–46.
  9. Chou I.-M., Eugster H.P. (1977) Solubility of magnetite in supercritical chloride solutions. Am. J. Sci. 277, 1296–1314.
  10. Crawford I.A, Anand M., Barber S., Cowley A., Crites S., Fa W., Flahaut J., Gaddis L.R., Greenhagen B., Haruyama J., Hurley D., McLeod C.M., Morse A., Neal C.R., Sargeant H., Sefton-Nash E., Tartèse R. (2023) Lunar Resources. In New Views of the Moon 2. Rev. Mineral. Geochem. 89 (Eds. Neal C.R., Gaddis L.R., Jolliff B.L., Lawrence S.J., Mackwell S.J., Shearer C.K., Valencia S.N.). Walter de Gruyter GmbH, 829–858.
  11. Dikov Y.P., Gerasimov M.V., Yakovlev O.I., Ivanov A.V. (2009) Valence state of iron in a condensate from the Luna 16 regolith. Petrology. 17, 429–438.
  12. Forester D.W. (1973) Mössbauer search for ferric oxide phases in lunar materials and simulated lunar materials. Proc. Lun. Sci. Conf. 4, 2697–2707.
  13. Fu X., Yin C., Jolliff B.L., Zhang J., Chen J., Ling Z., Zhang F., Liu Y., Zou Y. (2022) Understanding the mineralogy and geochemistry of Chang’E-5 soil and implications for its geological significances. Icarus. 388, 115254.
  14. Gay P., Bown M.G., Muir I.D. (1972) Mineralogical and petrographic features of two Apollo 14 rocks. Proc. Lunar Sci.Conf. 3, P. 351–362.
  15. Genge M.J., Grady M.M. (1999) The fusion crust of stony meteorites: Implications for atmospheric reprocessing of extraterrestrial materials. Meteoritic. Planet. Sci. 34, 341–356.
  16. Genge M.J., Davies B., Suttle M.D., Van Ginneken M., Tomkins A.G. (2017) The mineralogy and petrology of I-type cosmic spherules: implications for their sources, origins and identification in sedimentary rocks. Geochim. Cosmochim. Acta. 218, 167–200.
  17. Griscom D.L., Marquardt C.L. (1972) Evidence of lunar surface oxidation processes: Electron spin resonance spectra of lunar materials and simulated lunar materials. Proc. Lun. Sci. Conf. 3, 2397–2415.
  18. Guo Z., Li C., Li Y., Wen Y., Wu Y., Jia B., Tai K., Zeng X., Li X., Liu J., Ouyang Z. (2022) Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’E-5 lunar soil. Nat. Commun. 13, 7177.
  19. Guo Z., Li C., Li Y., Wu Y., Zhu C., Wen Y., Fa W., Li X., Liu J., Ouyang Z. (2023) Vapor-deposited digenite in Chang’e-5 lunar soil. Sci. Bull. 68, 723–729.
  20. Hauri E.H., Weinreich T., Saal A.E., Rutherford M.C., Van Orman J.A. (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science. 333, 213–215.
  21. He Q., Li, Y., Baziotis I., Qian Y., Xiao L., Wang Z., Zhang W., Luo B., Neal C.R., Day J.M.D., Pan F., She Z., Wu X., Hu Z., Zong K., Wang L. (2022) Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus. 383, 115082.
  22. Hu, S., He, H., Ji, J., Lin Y., Hui H., Anand M., Tartèse R., Yan Y., Hao J., Li R., Gu L., Guo Q., He H., Ouyang Z. (2021) A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature. 600, 49–53.
  23. Hunter R.H., Taylor L.A. (1981) Rust and schreibersite in Apollo 16 highland rocks – Manifestations of volatile element mobility. Proc. Lun. Planet. Sci. Conf.12, 253–259.
  24. Itambi A.C., Von Dobeneck T., Dekkers M.J., Frederi- chs T. (2010) Magnetic mineral inventory of equatorial Atlantic Ocean marine sediments of Senegal – glacial and interglacial contrast. Geophys. J. Int. 183, 163–177.
  25. Jiang Y., LiY., Liao S.Y., Yin Z.J., Hsu W.B. (2022) Mineral chemistry and 3D tomography of a Chang’E5 high-Ti basalt: implication for the lunar thermal evolution history. Sci. Bull. 67, 755–761.
  26. Jin S., Hao M., Guo Z., Yin B., Ma Y., Deng L., Chen X., Song Y., Cao C., Chai C., Wei Q., Ma Y., Guo J., Chen X. (2024) Evidence of a hydrated mineral enriched in water and ammonium molecules in the Chang’e-5 lunar sample. Nat. Astron. 8, 1127–1137.
  27. Joy K.H., Visscher C., Zolensky M.E., Mikouchi T., Hagiya K., Ohsumi K., Kring D.A. (2015) Identification of magnetite in lunar regolith breccias 60016: Evidence for oxidized conditions at the lunar surface. Meteorit. Planet. Sci. 50, 1157–1172.
  28. Joy K.H., Tartèse R., Messenger S., Zolensky M., Marrocchi Y., Frank D.R., Kring D.A. (2020) The isotopic composition of volatiles in the unique Bench Crater carbonaceous chondrite impactor found in the Apollo 12 regolith. Earth Planet. Sci. Lett. 540, 116265.
  29. Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W., Maniukiewicz W. (2007) Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Applied Catalysis A: General 326, 17–27.
  30. Kim H.Y., Choi B.-G., Rubin A.E. Wüstite in the DOM 03238 CO3.1 chondrite: Formation during atmospheric passage. 72nd Ann. Met. Soc. Meeting. 2009. Abs. 5222.
  31. Li S., Lucey P.G., Fraeman A.A., Poppe A.R., Sun V.Z., Hurley D.M., Schultz P.H. (2020) Widespread hematite at high latitudes of the Moon. Sci. Adv. 6, eaba 1940.
  32. Li Q.-L., Zhou Q., Liu Y., Xiao Z., Lin Y., Li J.-H., Ma H.-X., Tang G.-Q., Guo S., Tang X., Yuan J.-Y., Li J., Wu F.-Y., Ouyang Z., Li C., Li X.-H. (2021) Two billion-year-old volcanism on the Moon from Chang’E-5 basalts. Nature. 600, 54–58.
  33. Li J., Gu L., Tang X., Liu X., Hu S., Lin Y. (2024) First discovery of impact-induced vapor deposition of native copper, FeCo alloy and digenite from Chang’e-5 lunar soil. Icarus. 415, 116082.
  34. Lin H., Li S., Xu R., Liu Y., Wu X., Yang W., Wei Y., Lin Y., He Z., Hui H., He H., Hu S., Zhang C., Li C., Lu G., Yuan L., Zou Y., Wang C. (2022) In situ detection of water on the Moon by the Chang’E-5 lander. Sci. Adv. 8, eabl9174.
  35. Lipschutz M.E., Zolensky M.E., Bell M.S. (1999) New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites. Antarct. Met. Res. 12, 57–80.
  36. Liu J., Liu B., Ren X., Li C., Shu R., Guo L., Yu S., Zhou Q., Liu D., Zeng X., Gao X., Zhang G., Yan W., Zhang H., Jia L., Jin S., Xu C., Deng X., Xie J., Yang J., Huang C., Zuo W., Su Y., Wen W., Ouyang Z. (2022) Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples. Nat. Commun. 13, 3119.
  37. Lu G., Marshak S., Kent D.V. (1990) Characteristics of magnetic carriers responsible for Late Paleozoic remagnetization in carbonate strata of the mid-continent, U.S.A. Earth Planet. Sci. Lett. 99, 351–361.
  38. McCubbin F.M., Steele A., Nekvasil H., Schnieders A., Rose T., Fries M., Carpenter P.K., Jolliff B.L. (2010) Detection of structurally bound hydroxyl in fluorapatite from Apollo mare basalt 15058,128 using TOF-SIMS. Am. Mineral. 95, 1141–1150.
  39. McCubbin F.M., Vander Kaaden K.E., Tartese R, Klima R.L., Liu Y., Mortimer J.I., Barnes J.J., Shearer C.K., Treiman A.H., Lawrence D.J., Elardo S.M., Hurley D.M., Boyce J.W., Anand M. (2015) Volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: distribution, processes, sources, and significance. Am. Mineral. 100, 1668–1707.
  40. McCubbin F.M., Barnes J.J., Ni P., Hui H., Klima R.L., Burney D., Day J.M.D., Magna T., Boyce J.W., Tartèse R., Vander Kaaden K.E., Steenstra E., Elardo S.M., Zeigler R.A., Anand M., Liu Y. (2023) Endogenous Lunar Volatiles. In New Views of the Moon 2, Rev. Mineral. Geochem. 89 (Eds. Neal, C.R., Gaddis, L.R., Jolliff, B.L., Lawrence, S.J., Mackwell, S.J., Shearer, C.K., Valen- cia, S.N.). Walter de Gruyter GmbH, 729–788.
  41. Mittlefehldt D.W. Achondrites. Treatise on Geochemistry. Ed. Davis A.M. Oxford: Elsevier, 2003. V. 1. P. 559–599.
  42. Nyström J.O., Henrıґquez F., Naranjo J.A., Nasuland H.R. (2016) Magnetite spherules in pyroclastic iron ore at El Laco, Chile. Am. Mineral. 101, 587–595.
  43. Ohfuji H., Rickard D. (2005) Experimental syntheses of framboids – a review. Earth-Sci. Rev. 71, 147–170.
  44. Ovalle J.T., Reich M., Barra F., Simon A.C., Godel B., Le Vaillant M., Deditius A., Palma G., Heuser G., Arancibia G., Morata D. (2023) Fluid-assisted aggregation and assembly of magnetite microparticles in the giant El Laco iron oxide deposit, Central Andes. ACS Earth Space Chem. 7, 1378–1387.
  45. Pernet-Fisher J.F., Howarth G.H., Liu Y., Chen Y., Taylor L.A. 2014. Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility. Geochim. Cosmochim. Acta. 144, 326–341.
  46. Potts N.J., Tartèse R., Anand M., Van Westrenen W., Griffiths A.A., Barrett T.J., Franchi I.A. (2016) Characterization of mesostasis regions in lunar basalts: understanding late-stage melt evolution and its influence on apatite formation. Meteorit. Planet. Sci. 51, 1555–1575.
  47. Renggli C.J., Klemme S. (2021) Experimental investigation of Apollo 16 «Rusty Rock» alteration by a lunar fumarolic gas. J. Geophys. Res. 126, e2020JE006609.
  48. Roedder E. (1978) Silicate liquid immiscibility in magmas and in the system K2O–FeO–Al2O3–SiO2: an example of serendipity. Geochim. Cosmochim. Acta. 42, 1597–1617.
  49. Saal A.E., Hauri E.H., Lo Cascio M., Van Orman J.A., Rutherford M.C., Cooper R.F. (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature. 454, 192–196.
  50. Sawłowicz Z. (2000) Framboids: from their origin to application. Prace Mineralogiczne Mineral. Transact. 88, 3–58.
  51. Shearer C.K., Sharp Z.D., Burger P.V., McCubbin F.M., Provencio P.P., Brearley A.J., Steele A. (2014) Chlorine distribution and its isotopic composition in «rusty rock» 66095. Implications for volatile element enrichments of «rusty rock» and lunar soils, origin of «rusty» alteration, and volatile element behavior on the Moon. Geochim. Cosmochim. Acta. 139, 411–433.
  52. Shi Y., Peng W., Joy K.H., Yu X., Guan Y., Bao Z., Che X., Tartèse R., Snape J.F., Head J.W., Whitehouse M.J., Wang X., Qian Y., Li Z., Wang C., Long T., Xie S., Fan R., Liu J., Yang Z., Yang C., Wang P., Liu S., Wang Z., Huang H., Kang Y., Sun H., Zhang W., Tian L., Li H., Mao X., Shan W., Li D., Liu D., Nemchin A.A. (2024) Petrological, chemical, and chronological study of breccias in the Chang’e-5 soil. Meteorit. Planet. Sci. 59, 2296–2320.
  53. Sokol E.V., Kalugin V.M., Nigmatulina E.N., Volkova N.I., Frenkel A.E., Maksimova N.V. (2002) Ferrospheres from fly ash of Chelyabinsk coals: chemical composition, morphology and formation conditions. Fuel. 81, 867–876.
  54. Tang X., Tian H., Sun S., Gu L., Li Q., Li X., Li J. (2023) Origin and implication of pentlandite in Chang’e-5 lunar soils. Lithos. 458, 107342.
  55. Tartèse R., Anand M., McCubbin F.M., Elardo S.M., Shearer C.K., Franchi I.A. (2014) Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon. Geology. 42, 363–366.
  56. Taylor L.A., Mao H.K., Bell P.M. (1974) Beta-FeOOH, akaganeite, in lunar rocks. Proc. Lun. Sci. Conf. 5, 743–748.
  57. Tian H.-C., Wang H., Chen Y., Yang W., Zhou Q., Zhang C., Lin H.-L., Huang C., Wu S.-T., Jia L.-H., Xu L., Zhang D., Li X.-G., Chang R., Yang Y.-H., Xie L.-W., Zhang D.-P., Zhang G.-L., Yang S.-H., Wu F.-Y. (2021) Non-KREEP origin for Chang’E-5 basalts in the Procellarum KREEP Terrane. Nature. 600, 59–63
  58. Tiwari K., Ghosh S., Miyahara M., Ray D. (2021) Shock-induced incongruent melting of olivine in Kamargaon L6 chondrite. Geophys. Res. Lett. 48, e2021GL093592.
  59. Toppani A, Libourel G. (2003) Factors controlling compositions of cosmic spinels: application to atmospheric entry conditions of meteoritic materials. Geochim. Cosmochim. Acta. 67, 4621–4638.
  60. Udry A., Howarth G.H., Herd C.D.K., Day J.M.D., Lapen T.J., Filiberto J. (2020) What Martian meteorites reveal about the interior and surface of Mars. J. Geophys. Res.: Planets. 125, E2020JE006523.
  61. Van Ginneken M., Wozniakiewicz P.J., Brownlee D.E., Debaille V., Della Corte V., Delauche L., Duprat J., Engrand C., Folco L., Fries M., Gattacceca J., Genge M.J., Goderis S., Gounelle M., Harvey R.P., Jonker G., Kramer Ruggiu L., Larsen J., Lever J.H., Noguchi T., Peterson S., Rochette P., Rojas J., Rotundi A., Rudraswami N.G., Suttle M.D., Taylor S., Van Maldeghem F., Zolensky M. (2024) Micrometeorite collections: a review and their current status. Phil. Trans. R. Soc. 382, 20230195.
  62. Wadhwa M. (2008) Redox conditions on small bodies, the Moon and Mars. Rev. Mineral. Geochem. 68, 493–510.
  63. Wang Z., Wang W., Tian W., Li H., Qian Y., Pei J., Chen Z., Wang D., Liu P.-P., Fa W., Wu J, Bao H. (2023) Cooling rate of clinopyroxene reveals the thickness and effusion volume of Chang’E-5 basaltic flow units. Icarus. 394, 115406.
  64. Weeks R.A. (1972) Magnetic phases in lunar material and their electron magnetic resonance spectra. Proc. Lun. Sci. Conf. 3, 2503–2517.
  65. Wetzel D.T., Hauri E.H., Saal A.E., Rutherford M.J. (2015) Carbon content and degassing history of the lunar volcanic glasses. Nat. Geosci. 8, 755–758.
  66. Wilkin R.T., Barnes H.L. (1997) Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta. 61, 323–339.
  67. Xian H., Zhu J., Yang Y., Li S., Lin X., Xi J., Xing J., Wu X., Yang H., Zhou Q., Tsuchiyama A., HeH., Xu Y.-G. (2023) Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’e-5 sample. Nat. Astron. 7, 280–286.
  68. Yang W., Chen Y., Wang H., Tian H.-C., Hui H., Xiao Z., Wu S.-T., Zhang D., Zhou Q., Ma H.-X., Zhang C., Hu S., Li Q.-L., Lin Y., Li X.-H., Wu F.-Y. (2022) Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta. 335, 183–196.
  69. Yang J., Ju D., Pang R., Li R., Liu J., Du W. (2023) Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang’E-5 regolith. Geochim. Cosmochim. Acta. 340, 189–205.
  70. Zeng X., Li X., Liu J. (2023) Exotic clasts in Chang’e-5 regolith indicative of unexplored terrane on the Moon. Nat. Astron. 7, 152–159.
  71. Zelenski M., Kamenetsky V.S., Taran Y., Kovalskii A.M. (2020) Mineralogy and origin of aerosol from an arc basaltic eruption: Case study of Tolbachik volcano, Kamchatka. Geochem. Geophys. Geosyst. 21, e2019GC008802.
  72. Zhang Y., Hui H., Hu S., Hao J., Li R., Yang W., Li Q., Lin Y., Li X, Wu F. (2024) Extremely large Cl isotopic fractionation in Chang’e-5 impact glass beads. Earth Planet. Sci. Lett. 644, 118933.
  73. Zhou C., Tang H., Li X., Zeng X., Mo B., Yu W., Wu Y., Zeng X., Liu J., Wen Y. (2022) Chang’E-5 samples reveal high water content in lunar minerals. Nat. Commun. 13, 5336.
  74. Zolensky M.E., Ivanov A.V., Yang S.V., Mittlefehldt D.W., Ohsumi K. (1996) The Kaidun meteorite: Mineralogy of an unusual CM1 lithology. Meteorit. Planet. Sci. 31, 484–493.
  75. Zong K., Wang Z., Li J., He Q., Li Y., Becker H., Zhang W., Hu Z., He T., Cao K., She Z., Wu X., Xiao L., Liu Y. (2022) Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta. 335, 284–296.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».