Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 70, No 8 (2025)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Articles

Modeling of intraplate basaltic magma crystallization and the evaluation of the influence of metamorphism on rock composition: the Anyui gabbro-dolerite complex, Western Chukotka

Bazylev B., Ledneva G.

Abstract

The petrography, mineralogy and geochemistry of metamorphosed Permian–Triassic to Early Triassic rocks of the Anyui gabbro-dolerite complex, composing sills in metaterrigenous rocks of the Keperveem and Malyi Anyui uplifts of western Chukotka, were studied to determine the composition of the parental melt of these rocks and to assess the mobility of elements during their metamorphism. To solve these problems, the methods of petrological and geochemical modeling of melt crystallization were applied using the COMAGMAT version 3.72 program. It was established that the rocks (hypabyssal gabbros, gabbrodiorites, and diorites) are derivatives of a single parental melt formed in a large lower crustal magma chamber. These rocks are shown to have crystallized from intraplate continental tholeiitic basaltic parental melt that had a moderately differentiated composition with Mg# 52.1, corresponding to the Cpx–Pl cotectic and exhibited signals of crustal contamination. During regional metamorphism to the greenschist facies, the contents of a number of major, minor, and trace elements in the most of the studied rocks have been changed, with the estimated relative mobility of elements increasing as follows: Eu, V < Mn < Zn, U, Co < Cu, Pb < Sr < Fe, Ba, K, Rb < Ni < Cs < Mg < Ca, Na < Li. The elements immobile during metamorphism were Si, Al, Ti, P, REE (except Eu), Y, Sc, Nb, Ta, and probably also Zr, Hf, and Th (although the contents of the latter in some rocks may reflect the presence of xenogenic accessory minerals). The COMAGMAT program was applied to model the phase crystallization sequence established based on petrographic and mineralogical data on rocks, and the parameters of the compositions of the coexisting minerals during the fractionation stages of the parental melt before magnetite started to crystallize. The application of the petrological–geochemical modeling method in combination with data on the geochemistry and mineralogy of the gabbroids thus allows one to evaluate not only the compositions of the magmas and melts and their changes during fractionation but also an input/output of elements during metamorphism and the degree of their mobility.

Geochemistry International. 2025;70(8):577-603
pages 577-603 views

Bitumens in the Mir kimberlite pipe (Yakutia)

Kaminsky F.V., Konopleva I.V., Skvortsova V.L., Kuznetsova O.V.

Abstract

Solid bitumen in the Mir kimberlite pipe form vein-like segregations several centimeters in size. They are distributed irregularly in the pipe body, regardless of the kimberlite breccia varieties distribution. Bitumen content in kimberlites ranges from 0.001 wt % to 0.12 wt %. Bitumen-enriched areas are confined to the pipe contacts and tectonic faults. The studied bitumen-containing kimberlite samples were collected, in the Mir pipe, from depths of 100 m and 130 m. Biomarker hydrocarbons were detected in the bitumen, indicating a biogenic origin of the organic matter. The carbon isotope compositions of bitumoids were determined, and biomarker analysis was carried out by gas chromatographic mass spectroscopy. The following biomarkers were identified: n-alkanes, isoprenoids Pr and Ph, tri- and pentacyclic terpanes – hopanes and steranes. The pristane to phytane ratio Pr/Ph = 0.8 indicates reducing conditions of formation, consistent with marine conditions. The oddness ratio of n-alkanes, sterane and hopane maturity indices shows that the thermal maturity of bitumen corresponds to the initial stage of the oil formation. The low content of long-chain alkanes and the predominance of C29 over C27 among regular steranes (C29/C27 = 2.2) allows to assume that the initial biota for the organic matter (OM) of the bitumen sample under study could be phytoplankton. The δ13CVPDB values of the studied bitumen (from –29.37 ‰ to –31.64 ‰) correspond to the isotopic composition of bitumen in the Paleozoic and Mesozoic sediments of the Siberian Platform (from –25.8 ‰ to –33.8 ‰) and differ significantly from the isotopic composition of deep carbon (from –2 ‰ to –10 ‰). According to these features, the investigated bitumen from the Mir pipe are of marine origin.

Geochemistry International. 2025;70(8):604-614
pages 604-614 views

Ti ferriallanite-(Ce), Ti and Ti-V allanite-(Ce), allanite-(Ce), allanite-(Y), and REE epidote in biotite-bearing quartz gabbroids and plagiogranitoids within the island-arc Pervomaysk-Ayudag complex of the Mountain Crimea

Spiridonov E.M., Ovsyannikov G.N., Filimonov S.V., Koybagarova E.S., Korotaeva N.N.

Abstract

The unique association of rare-earth minerals of the epidote group, as well as the evolution of lantanides and actinides, titanium and vanadium in their composition are described. Allanite-(Ce), often with a ferriallanite-(Ce) core, an outer zone of allanite-(Y) and a rim of REE epidote, forms pseudomorphs after chevkinite-(Ce) and perrierite-(Ce), as well as isolated crystals. They form intergrowths with biotite, developing near it in quartz gabbronorite-dolerites and gabbronorite-diorites of the island-arc mafic hypabyssal Pervomaysk-Ayudag complex within Mountain Crimea. Zonal allanite-(Ce) of similar composition, accompanied by REE epidote rims, is widespread in quartz diorites and plagiogranites of the same complex, where it is often developed in granophyric quartz-oligoclase intergrowths. Brown ferriallanite-(Ce) enriched in Ti (± Th) forms cores in brown allanite-(Ce) crystals enriched in Ti (± V) (up to 4.9 wt. % TiO2). Allanite-(Ce) enriched in titanium (up to 3.5 wt. % TiO2), which replaced ilmenite, is extremely rich in vanadium (up to 4.5 wt. % V2O3). Light colored low-titanium allanite-(Ce) has grown on titanium enriched allanite-(Ce). The distribution of lanthanides and yttrium in allanite-(Ce) and ferriallanite-(Ce) is: Ce > La > > Nd > Y > Pr > Sm ~ Dy ~ Gd > Er ~ Tb. The outer zones of allanite-Ce) crystals and rare-earth epidote are relatively enriched in Nd, whereas Nd > La in some instances. The ratio of yttrium and lanthanides in allanite-(Y) is specific: Y >> Ce ~ Nd ~ Dy ~ Er > La ~ Gd ~ Yb. Allanite-(Ce) of Crimean gabbroids is noticeably richer in La, Ti, V and poorer in Y, Sm, Gd in comparison with allanite-(Ce) of Crimean plagiogranitoids. According to (Fleischer, 1985), the distribution of lanthanides and yttrium in allanite-(Ce) of Crimean plagiogranitoids is close to the similar distribution in standard granites, differing in an increased proportion of Gd. The coloration causes and matter sources for magmatic Crimean allanite formation are considered. Allanite was partially replaced by monazite-(Ce) during the processes of regional metamorphism under the conditions of the prehnite-pumpellyite facies.

Geochemistry International. 2025;70(8):615-644
pages 615-644 views

Recalibration of the Equation for Calculating Water Content in Silicate Melt Equilibrated with Aqueous Fluid

Gnuchev Y.Y., Bychkov D.A., Koptev-Dvornikov E.V.

Abstract

Experience in using the previously obtained equation for predicting the limiting solubility of water in a silicate melt showed that for a number of experiments performed in the pressure range from 5 to 20 kbar, the calculated water contents are unrealistically high compared to the experimental values. The sample used in the previous work (containing the results of 412 experiments) was significantly supplemented with experiments from the MELT database. Based on the newly collected total sample consisting of 1241 experiments, the set of variables responsible for the effect of composition on water solubility was revised. The newly calibrated equation for calculating the limiting solubility of water allows an uncertainty of no more than ±0.01 mole fraction, or ±0.25 wt. % predict saturated water contents in silicate melts in the ranges: pressure from atmospheric to 20 kbar; temperatures from 825 to 1550 K, and the sample size used for optimization allows the equation to be used to calculate saturated water contents in a wide range of silicate melts, from komatiite basalts to rhyolites.

Geochemistry International. 2025;70(8):645-656
pages 645-656 views

Dissolved Molybdenum, Tungsten, and Vanadium at the Oxic–Anoxic Interface in the Black Sea

Rimskaya-Korsakova M.N., Dubinin A.V.

Abstract

Distribution of dissolved molybdenum, tungsten, and vanadium was investigated in the northeastern part of the Black Sea down to a depth of 320 m. The depth of hydrogen sulfide appearance (the onset of the anaerobic zone) was about 165 m (at a potential density ~16.2 kg m3) in the studied region. Water samples representing dissolved (< 0.45 μm) species and dissolved plus labile particulate species of the elements were collected in July 2016 and 2017. The concentration of dissolved Mo increased with depth in the oxic zone, from 36 to 39 nmol/kg, and showed no difference from the sum of dissolved and particulate forms. In the anoxic, molybdenum decreased with the appearance of more than ~8 μM hydrogen sulfide reaching 3.3 nmol/kg at 320 m. The concentration of tungsten decreased from 160 pmol/kg at the surface to 113 pmol/kg at the redox interface (in the suboxic layer at depth 150m) in the presence of particulate manganese. As Mn oxyhydroxides dissolved in the hydrogen sulfide zone, W concentrations increased to 221 pmol/kg at the depth 180m, along with an increase in dissolved Mn. The distribution of W at the redox interface is controlled by the sorption properties of manganese oxide. Dissolved vanadium was depleted at a depth of 5 m and increased with depth in the oxic zone to 13 nmol/kg, with a decrease in the suboxic zone (down to 7.1 nmol/kg). In the anoxic zone, a maximum V concentration (up to 15.2 nmol/kg) was observed, coinciding with the maximum of dissolved Mn. The calculated balance of Mo and V in the Black Sea showed that about 1200 of Mo and 1200 of V are buried in sediments annually. As for tungsten, it is assumed its significant supply to the Black Sea in the form of suspended and colloidal matter from rivers, transformed in the process of suboxic diagenesis in sediments.

Geochemistry International. 2025;70(8):657-674
pages 657-674 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».