Interpretation of the Gnevyshev–Ohl Effect and Modulation of Galactic Cosmic Rays by Solar Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The available data for complete magnetic cycles from the 18th to the current moment of the 25th cycle are studied, relative to the maxima of galactic cosmic rays (GCR) in even cycles (in the 18th, the minimum of the SSN cycle is taken as 0): the sunspot number (SSN), the polar magnetic field (Bpol) and the Moscow neutron monitor (NM MOSC). The asymmetry of even and odd 11-year solar activity (SA) cycles in a complete 22-year magnetic cycle (visible in Bpol, GCR and SSN) corresponds to the Gnevyshev–Ohl rule (GOR). It is caused by the appearance of sunspot cycles in the decay phase of odd, which provide an additional non-zero magnetic flux necessary to form the maximum dipole magnetic field and complete the complete even-odd 22-year cycle. The numerical parameter is proposed that characterizes the GOR efficiency, which increases in the decay phase of SSN cycles. If the GOR is fulfilled, then within the framework of the Leighton model, the Bpol values have a constant contribution of the relic magnetic field <|−10| μT. An algorithm for searching for the beginning of SA cycles (integral maxima/minima) according to SSN, Bpol and NM MOSC data has been developed and applied. The times found do not coincide with each other, and the beginning of cycles according to Bpol always advances, and the greatest delay corresponds to the minimum of 23–24 SSN cycles.

About the authors

I. Yu. Grigorieva

Main (Pulkovo) Astronomical Observatory

Email: irina.2014.irina@mail.ru
Saint-Petersburg, Russia

V. A. Ozheredov

Space Research Institute

Moscow, Russia

A. B. Struminsky

Space Research Institute

Email: astrum@cosmos.ru
Moscow, Russia

References

  1. Белов А.В., Гущина Р.Т., Обридко В.Н., Шельтинг Б.Д., Янке В.Г. Прогноз и эпитиз долгопериодных вариаций космических лучей на основе различных индексов солнечной активности // Изв. РАН, сер. физ. Т. 69. № 6. С. 890–892. 2005.
  2. Гневышев М. Н., Оль А. И. О 22-летнем цикле солнечной активности. // Астрон. ж. 1948. Т. 25. № 1. С. 18–20.
  3. Гущина Р. Т., Белов А. В., Янке В. Г. Спектр долгопериодных вариаций в минимуме солнечной активности 2009 // Изв. РАН, сер. физ. Т. 77. № 5. С. 577–580. 2013. https://doi.org/10.7868/S0367676513050244
  4. Ишков В. Н. Итоги и уроки 24 цикла – первого цикла второй эпохи пониженной солнечной активности // Астрон. ж. 2022. Т. 99. № 1. С. 54–69. https://doi.org/10.31857/S0004629922020050
  5. Струминский А. Б., Белов А. В., Гущина Р. Т., Янке В. Г., Григорьев А. Ю. О прогнозе модуляции галактических космических лучей в 25-ом цикле солнечной активности // Геомагнетизм и Аэрономия. 2025. (В печати).
  6. Babcock H. W. The topology of the Sun’s magnetic field and the 22-year cycle //Astrophys. J. V. 133. P. 572. 1961. https://doi.org/10.1086/147060
  7. Bravo S., Stewart G. The Inclination of the Heliomagnetic Equator and the Presence of an Inclined Relic Field in the Sun // Astrophys. J. 1995. V. 446. P. 431.
  8. Charbonneau P. Dynamo models of the solar cycle // Living Reviews in Solar Physics. V. 17. Iss. 4. 2020. https://doi.org/10.1007/s41116-020-00025-6
  9. Cliver E. W., von Steiger R. Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind // Space Sci Rev. 2017. V. 210. P. 227–247. https://doi.org/10.1007/s11214-015-0224-1
  10. Cliver E. W., White S. M., Richardson I. G. A Floor in the Sun’s Photospheric Magnetic Field: Implications for an Independent Small-scale Dynamo // Astrophys. J. Let. 2024. V. 961. L46 (7pp). https://doi.org/10.3847/2041-8213/ad192e
  11. Iijima H., Hotta H., Imada S., Kusano K., Shiota D. Improvement of solar-cycle prediction: Plateau of solar axial dipole moment // A&A. 607. L2 (2017). https://doi.org/10.1051/0004-6361/201731813
  12. Jiang J., Cameron R. H., Schüssler M. The cause of the weak solar cycle 24 // Astrophys. J. Let. 2015. V. 820. P. L28–L34. https://doi.org/10.1088/2041-8205/808/1/L28
  13. Kumar P., Karak B. B., Sreedevi A. Variabilities in the polar field and solar cycle due to irregular properties of bipolar magnetic regions // MNRAS. 2024. V. 530. P. 2895–2905. https://doi.org/10.1093/mnras/stae1052
  14. Leighton R. B. Transport of magnetic fields on the Sun // Astrophys. J. V. 140. P. 1547–1562. 1964. https://doi.org/10.1086/148058
  15. Leighton R. B. A magneto-kinematic model of the solar cycle // Astrophys. J. 1969. V. 156. P. 1–26. https://doi.org/10.1086/149943
  16. Levy E. H., Boyer D. Oscillating Dynamo in the Presence of a Fossil Magnetic Field. The Solar Cycle // Astrophys. J. 1982. V. 254. P. L19–L22.1
  17. Mordvinov A.V., Kitchatinov L.L. Active Longitudes and North-South Asymmetry of the Activity the Sun as Manifestations of Its Relic Magnetic Field // Astron. Rep. 2004. V. 48. No. 3. P. 254–260. https://doi.org/10.1134/1.1687019
  18. Mursula K., Usoskin I.G., Kovaltsov G.A. Persistent 22-year Cycle in Sunspot Activity: Evidence for a Relic Solar Magnetic Field // Sol. Phys. 2001. V. 198. P. 51–56.
  19. Nagovitsyn Yu.A. Confirmation of the “Lost” Cycle and the Gnevyshev–Ohl Rule in a Series of Sunspot Areas Spanning 410 Years // Astron. Let. 2024. V. 50. No. 8. P. 529–535. https://doi.org/10.1134/S1063773724700397
  20. Nagovitsyn Y.A., Ivanov V.G. Solar Cycle Pairing and Prediction of Cycle 25 // Sol. Phys. 2023. V. 298. P. 37. https://doi.org/10.1007/s11207-023-02121-w
  21. Nandy D. Progress in Solar Cycle Predictions: Sunspot Cycles 24–25 in Perspective // Sol. Phys. 2021. V. 296. P. 54. https://doi.org/10.1007/s11207-021-01797-2
  22. Pal S., Nandy D. Algebraic quantification of the contribution of active regions to the Sun’s dipole moment: applications to century-scale polar field estimates and solar cycle forecasting // MNRAS. V. 531. P. 1546–1553. 2024. https://doi.org/10.1093/mnras/stae1205
  23. Petrovay K. Solar cycle prediction. Living Rev. Sol. Phys. V. 17: 2. 2020. https://doi.org/10.1007/s41116-020-0022-z
  24. Piddington J. H. Solar manetic field and convection: the primordial field theory // in Basic Mechanism of Solar Activity IAU Sympos. No. 71. Reidel 1976. P. 389–407.
  25. Pipin V.V., Kosovichev A.G., Tomin V.E. Effects of Emerging Bipolar Magnetic Regions in Mean-field Dynamo Model of Solar Cycles 23 and 24 // Astrophys. J. V. 949. P. 7 (13pp). https://doi.org/10.3847/1538-4357/acaf69
  26. Pudovkin M.I., Benevolenskaya E.E. The Oyasi-steady Primordial Magnetic Field of the Sun, and the Intensity Variations of the Solar Cycle // Sov. Astron. Let. 1982. V. 8. No. 4. P. 273–274.
  27. Schrijver C.J., Livingston W.C., Woods T.N., Mewaldt R.A. The minimal solar activity in 2008–2009 and its implications for long-term climate modeling // Geophys. Res. Let. 2011. V. 38. L06701. https://doi.org/10.1029/2011GL046658
  28. Tlatov A.G. Reversals of Gnevyshev–Ohl Rule // Astrophys. J. Let. V. 72. L30 (4pp). https://doi.org/10.1088/2041-8205/772/2/L30
  29. Tlatov A.G. The change of the solar cyclicity mode // JASR. 2015. V. 55. P. 851–85. https://doi.org/10.1016/j.asr.2014.06.024

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).